ACC 2024
CONFERENCE PROGRAM

SPONSORING ORGANIZATION
The American Automatic Control Council, in cooperation with IFAC

AACC®

IFAC

INTERNATIONAL FEDERATION
OF AUTOMATIC CONTROL

MEMBER SOCIETIES

Please visit our website for more information!
acc2024.a2c2.org
TABLE OF CONTENTS

Welcome To The ACC2024 ... 1
The American Automatic Control Council ... 1
Greetings from the AACC President .. 3
Greetings and Thanks from the General Chair 4
Technical Program Overview .. 5
Greetings from the IFAC President ... 6

Plenary Sessions ... 7

AACC Awards .. 15

Conference Information ... 24
Registration .. 24
Internet Access .. 26
Coffee Breaks .. 26
Exhibits ... 26
Opening Reception .. 26
Plenary Sessions .. 26
Awards Ceremony .. 26
Conference Banquet .. 27
Closing Reception .. 28
Dependent Care Reimbursement .. 28
Venue and Local Information .. 29
Transportation .. 30

Exhibitors and Sponsors ... 31
Gold Sponsors ... 31
Silver Sponsors ... 34
Bronze Sponsors .. 37

Special Sessions ... 39
Wednesday Special Sessions ... 39
Thursday Special Sessions .. 44
Friday Special Sessions .. 48

Student Programs .. 52
Student Best Paper Award Session ... 52
Student Best Paper Award Finalists .. 52
Student Travel Grants .. 53
Special Sessions for Students ... 53
Self-Driving Car Student Competition ... 55

Tutorial Sessions .. 56

Workshops .. 58
Monday Workshops ... 58
Tuesday Workshops .. 59

Late-breaking News Poster Session .. 65

Daily Overview of Events/Activities ... 69
Monday Overview .. 69
Tuesday Overview .. 69
Wednesday Overview ... 69
Thursday Overview ... 70
Friday Overview ... 72

Technical Program
 Program at a Glance ... 75
 Detailed Program Listing ... 81

Index of Authors, Chairs, and Organizers 157

Program Committee/Society Review Chairs 187

Hotel Floor Plan ...
 Inside back cover
WELCOME TO THE ACC2024

THE AMERICAN AUTOMATIC CONTROL COUNCIL

The American Automatic Control Council (AACC) was established in 1957, “to promote cooperation among the various segments of the automatic control profession within the US, and to represent the US in international activities.” To implement this mission, the AACC is the United States’ National Member Organization of the International Federation for Control (IFAC). In this role, AACC facilitates participation in IFAC by US control engineers.

AACC does not have individuals as members. Rather, to widely promote cooperation throughout the control profession, our members include professional engineering societies that have an interest in automatic control. The current membership is: American Institute of Aeronautics and Astronautics (AIAA), American Institute of Chemical Engineers (AIChE), Applied Probability Society (APS, a subdivision of INFORMS), American Society of Civil Engineers (ASCE), American Society of Mechanical Engineers (ASME), Institute of Electrical and Electronics Engineers (IEEE), International Society of Automation (ISA), Society for Modeling & Simulation International (SCS), and Society for Industrial and Applied Mathematics (SIAM). Each member society selects a person to represent their organization on the AACC Board of Directors who direct the activities of AACC. AACC is a non-profit organization, returning their entire annual surplus to its member organizations.

In addition to representing the US in IFAC, AACC’s major activities include two high-quality annual conferences: the American Control Conference (ACC) offered in late Spring or early Summer, and the Modeling, Estimation and Control Conference (MECC) offered in the Fall. The proceedings of these conferences are archived in IEEE Xplore and IFAC’s PapersOnLine, respectively. AACC also coordinates all IFAC symposiums, workshops and conferences held in the US. Please visit the AACC website a2c2.org for more information about upcoming conferences.

AACC sponsors a set of awards that recognize outstanding achievement in control theory and practice. The awards are given annually at the ACC. You are invited to attend this year’s ceremony on Thursday, 11 July 2024, starting at 11:45 AM in the Frontenac Ballroom.

AACC also supports control education from K-12 through post-graduate studies. The AACC provides opportunities for personal and professional development and recognition to its large cast of volunteers, on whom it is crucially dependent for its operations and success.
To find out more, either visit the AACC booth in the exhibit area or browse our website. If you think you may want to volunteer for AACC activities, stop by the booth and leave your name. There are many opportunities for volunteers to help coordinate and promote automatic control events.
GREETINGS FROM THE AACC PRESIDENT

Welcome to Toronto and the 2024 American Control Conference (ACC). As an annual gathering sponsored by the American Automatic Control Council (AACC), the ACC brings together experts from academia, government, and industry across all engineering disciplines as well as applied mathematics, to share new and creative ideas and results in control. Please take this opportunity to socialize and collaborate with old friends as well as making new ones. It is amazing to see all the student attendees; we hope you use the conference as a vehicle to learn and interact with the senior members of our community.

Over the past several years, Dr. Martha Grover and her Operating Committee have spent an enormous amount of time and effort planning the conference. On behalf of all the participants, I want to extend our thanks for an outstanding job. We are all looking forward to the technical sessions, plenaries, workshops, special sessions, exhibits, social events, and receptions.

I also want to extend my heartfelt appreciation to all the volunteers including the General Chairs, Conference Operating Committees, Board of Directors, AACC Standing Committees, and the Officers that make the ACCs and all other AACC sponsored conferences outstanding events. I would also like to thank all the authors and reviewers for their contributions to ACC 2024.

Thank you for attending this premier control event and enjoy your time in Toronto,

Robert P. Judd, Ph.D.
President, American Automatic Control Council
GREETINGS AND THANKS FROM THE GENERAL CHAIR

It is my pleasure to welcome you all to the 2024 American Control Conference in Toronto. The American Control Conference provides a unique opportunity for members of the controls community—from across the nine member societies of AACC—to gather together and share their latest findings. This year we are returning to Canada after the successful 2012 ACC in Montreal, and we appreciate the hospitality of Toronto, the key contributions of our five members of the Operating Committee from Canadian institutions, and the foundational support of IFAC Canada in establishing this exciting venue on the Toronto waterfront.

This year we are partnering with AACC on the Bystander Intervention workshop, to help ensure that the ACC continues to be a safe and welcoming experience for all our participants. Thank you to those members of the community who participated in this inaugural workshop. We have extensive financial support for students at this year’s ACC, thanks to the generous support of the US National Science Foundation, AACC, and member societies, enabling us to support the conference registration of 200 students and hotel costs for 90 students. Our student-industry networking session on Wednesday provides a venue for students to build their community here at the conference and beyond. The student contest by Quanser returns to the 2024 ACC after a successful inaugural contest in San Diego last year. Be sure not to miss the Student Best Paper Session on Wednesday starting at 3:00 pm.

I am grateful for all the critical contributions of the Operating Committee, without whom this all-volunteer conference would not be possible. Program Chair Kam Leang has led the review and construction of the technical program. Thanks to our vibrant community, we had a robust and strong set of submissions. I hope you all will find new ideas and receive constructive feedback throughout the technical program this week.

With best wishes for a great conference experience, and thank you for your support.

Martha Grover
General Chair, 2024 American Control Conference
TECHNICAL PROGRAM OVERVIEW

The Technical Program of the 2024 American Control Conference captures the most recent advancements made and emerging trends of control theory and applications (see word cloud below). We thank all contributors for the 1391 paper submissions, of which 864 will be published in the conference proceedings, leading to an acceptance rate of 62%. The program also includes 34 invited sessions, 14 workshops, 2 tutorial sessions, 20 special sessions, and 43 Late-Breaking News posters.

We are happy to have four plenary speakers share their exciting work in control. You will hear them describe the latest in uncrewed autonomous vehicles, control of biological processes, decision-making algorithms, and AI-driven approaches to control. The conference offers great opportunities for control researchers and practitioners to hear and learn about the latest work in control through morning Rapid Interactive sessions, followed by afternoon traditional technical sessions.

I want to thank the entire Program Committee, as well as Luis Ricardez-Sandoval, Invited Sessions Chair, and Hugh Liu, Industry and Applications Chair for their valuable input and outstanding editorial service. My sincere appreciation also goes to the Society Review Chairs, Associate Editors, and Associate Editors-at-Large for their diligent and dedicated work. I especially thank the dedicated anonymous reviewers for their constructive reviews of submitted papers. Finally, I want to thank General Chair Martha Grover, Conference Editorial Board Chair Amir Aghdam, and Pradeep Misra of PaperCept, Inc. for all their efforts and support in creating the program. Please enjoy the conference and I hope to see you in Toronto this week!

Kam K. Leang
Program Chair, 2024 American Control Conference
GREETINGS FROM THE IFAC PRESIDENT

As the President of IFAC (International Federation of Automatic Control), I extend my warm congratulations to ACC 2024 in Toronto. The ACC is organized under the auspices of the American Automatic Control Council (AACC), which serves as the US National Member Organization (NMO) of IFAC.

AACC holds a significant position within IFAC, having been an NMO since the federation's inception in 1957. Notably, three past IFAC Presidents—Harold Chestnut (1957-1958), John C. Lozier (1972-1975), and Stephen J. Kahne (1993-1996)—have hailed from AACC. Many scholars and engineers representing AACC currently hold key roles within IFAC, serving as Executive Officers, Technical Board Members, Publication Board Members, Conference Board Members, and various Committee Members. AACC also plays a significant role in hosting numerous IFAC Conferences and its members make substantial contributions to IFAC’s publications.

While IFAC itself doesn't have individual members, it established "IFAC Affiliates" several years ago, along with a comprehensive portal (https://affiliates.ifac-control.org/). This platform is free to join for all scholars and engineers in automatic control, providing them with various benefits such as newsletters and reduced registration fees at IFAC Conferences.

The 23rd IFAC World Congress in 2026 will take place in the picturesque beach-front city of Busan, Republic of Korea. Most nationalities will not require a visa for entry. Busan is renowned internationally as a prime destination for meetings and has been recognized as the best destination in Asia by CNN. The vision for IFAC WC 2026 is to foster global friendship through control technology, drawing strength from innovative global diversity. Furthermore, the notion of global friendship in the future will embrace living harmoniously with the convergence of artificial intelligence (AI).

ACC and various IFAC conferences serve not only as vibrant forums for technical discussions but also as platforms for researchers worldwide to collaborate and exchange ideas. These technical meetings offer an exciting opportunity to forge connections with diverse individuals from around the world. I extend my best wishes for the success of ACC 2024.

Dongil “Dan” Cho
President, the International Federation of Automatic Control
PLENARY SESSIONS

Plenary Lecture

Control of Uncrewed Vehicle Systems – from Unconventional Flyers to Maritime Autonomy

Kingsley Fregene
Lockheed Martin, USA

Wednesday, July 10, 8:30 – 9:30
Metro E/C

This talk will provide an overview of research and technology development efforts for controlling uncrewed vehicles operating in the aerial and maritime domains, and across domains. In the first part of the talk, we will describe autonomous control development for a variety of bio-inspired and hybrid uncrewed vehicles including a family of single and double-winged micro air vehicles (MAVs) inspired by fruits and seeds. We will also highlight selected application areas in omni-directional sensing and navigation-aiding. In the second part of the talk, we will discuss control schemes for uncrewed maritime vehicles and demonstrate application to relevant missions. We will describe multi-vehicle control and experiments in coordinated control across domains. The talk will conclude by taking a brief look at human-autonomy teaming in the context of control for optionally-crewed air vehicles.

Kingsley Fregene is the Director of Technology Integration, overseeing practices for defining and executing the strategic Research and Technology portfolio of Lockheed Martin’s Corporate Technology Office. Prior to his current role, he was the Chief Engineer for Applied Research at Lockheed Martin in Dallas, TX, where he guided the execution of a diverse portfolio of advanced technology development efforts. Before that, he led the Robotics & Intelligent Systems group at Lockheed Martin Advanced Technology Labs, and a variety of autonomous control, sensing, and civil aviation R&D efforts at Honeywell.

Kingsley has served on the editorial boards and program committees of IEEE
Control Systems Society and Robotics & Automation Society periodicals and conferences. He has also served as Chair, IEEE Technical Committee on Aerospace Controls. He was the 2021 recipient of the Control Engineering Practice Award from the American Automatic Control Council. Kingsley and his work have featured in National Geographic: Engineering Inspirations from Nature, a video and workbook series for middle school students, and in the children’s books Tiny Robots (2015) and Mimic-Makers: Biomimicry Inventors Inspired by Nature (2021).

Kingsley is a Fellow of the IEEE, holds several patents, and has authored journal articles, conference papers and book chapters, including 4 best paper award winners, in autonomy, robotics, uncrewed vehicle systems, machine learning, applications of AI, and intelligent control systems. He received his Ph.D. and M.A.Sc. degrees from the University of Waterloo, Canada, and his B.Eng. with first class honors from Federal University of Technology, Owerri, Nigeria, all in Electrical & Computer Engineering.
Plenary Session

A Control Systems Approach to Cell Fate Reprogramming

Domitilla Del Vecchio
Massachusetts Institute of Technology, USA

Thursday, July 11, 8:30 – 9:30
Metro E/C

Today, it is possible to reprogram the type of a cell for on-demand patient-specific cell therapy, wherein damaged cells in the body are replaced with healthy cells of the correct type generated from easy-to-extract patient’s cells. One approach to produce cells of the desired type is to first reprogram somatic cells, such as skin cells, to pluripotent stem cells, and to then differentiate these pluripotent cells down to the cell type in need. Both processes require accurate control of the temporal concentration of fate-specific proteins, called transcription factors, in the cell in order to efficiently generate high quality output cells. However, so far, accurate control of cellular concentrations has been out of reach. Practitioners inject DNA that produces the appropriate transcription factors in the starting cells at constant rates, without any control on cellular concentrations. In the past decade, the advances in engineering biology have reached the stage where we can implement nonlinear controllers to regulate the cellular level of key molecular players. In this talk, I will illustrate key obstacles to accurate control of protein levels in mammalian cells by conceptualizing the problem through input/output nonlinear, stochastic, models of gene regulation in the context of cell fate determination. I will then use these models to design biomolecular high-gain and integral feedback controllers in mammalian cells to achieve set-point regulation robustly to noise and cellular perturbations. Finally, I will go back to the problem of reprogramming somatic cells to pluripotency and I will show our controllers in action both as a way to uncover optimal reprogramming trajectories and as a way to enforce more accurately optimal transcription factor levels during reprogramming. This is the first instance in which biomolecular controllers have been used for pluripotent stem cell reprogramming. With these tools and experimental demonstrations, we have set the foundations for future research on the use of sophisticated biomolecular networks as controllers of complicated biological processes.
Domitilla Del Vecchio received her Ph. D. degree in Control and Dynamical Systems from the California Institute of Technology, Pasadena, and the Laurea degree in Electrical Engineering (Automation) from the University of Rome at Tor Vergata in 2005 and 1999, respectively. From 2006 to 2010, she was an Assistant Professor in the Department of Electrical Engineering and Computer Science and in the Center for Computational Medicine and Bioinformatics at the University of Michigan, Ann Arbor. In 2010, she joined the Department of Mechanical Engineering at the Massachusetts Institute of Technology (MIT), where she is currently Professor and member of the Synthetic Biology Center.

She is a Fellow of the International Federation of Automatic Control (2022), an IEEE Fellow (2021), and a recipient of the Newton Award for Transformative Ideas during the COVID-19 Pandemic (2020), the 2016 Bose Research Award (MIT), the Donald P. Eckman Award from the American Automatic Control Council (2010), the NSF Career Award (2007), the American Control Conference Best Student Paper Award (2004), and the Bank of Italy Fellowship (2000). Her research focuses on developing techniques to make synthetic genetic circuits robust to context and on applying these to biosensing and cell fate control for regenerative medicine applications.
The convergence of physical and digital systems in modern engineering applications has inevitably led to closed-loop systems that exhibit both continuous-time and discrete-time dynamics. These closed-loop architectures are modeled as hybrid dynamical systems, prevalent across various technological domains, including robotics, power grids, transportation networks, and manufacturing systems. Unlike traditional “smooth” ordinary differential equations or discrete-time recursions, solutions to hybrid dynamical systems are generally discontinuous, lack uniqueness, and have convergence and stability properties that are defined with respect to complex sets. Therefore, effectively designing and controlling such systems, especially under disturbances and uncertainty, is crucial for the development of autonomous and efficient data-driven engineering systems capable of achieving adaptive and self-optimizing behaviors. In this talk, I will delve into recent advancements in the analysis and design of feedback controllers that can achieve such properties in complex scenarios via the synergistic use of adaptive “seeking” dynamics, robust hybrid control, and decision-making algorithms. These controllers can be systematically designed and analyzed using modern tools from hybrid dynamical systems theory, which facilitate the incorporation of "exploration" and “exploitation" behaviors within complex closed-loop systems via multi-time scale tools and perturbation theory. The proposed methodology leads to a family of provably stable and robust algorithms suitable for solving model-free feedback stabilization and decision-making problems in single-agent and multi-agent systems for which smooth feedback solutions fall short.
Jorge I. Poveda received double B.Sc. degrees in Electronics Engineering and Mechanical Engineering, both from the University of Los Andes, Bogota, Colombia, in 2012. He received his M.Sc. and Ph.D. degrees in Electrical and Computer Engineering from UC Santa Barbara in 2016 and 2018, respectively. After receiving his Ph.D., he was a Postdoctoral Fellow in the School of Engineering and Applied Sciences at Harvard University. Afterward, he joined the faculty of the Electrical, Computer, and Energy Engineering Department at the University of Colorado, Boulder, where he was an Assistant Professor from 2019 until 2022. Subsequently, he joined the Electrical and Computer Engineering Department at the University of California, San Diego, where he is currently an Assistant Professor. He has received the CCDC Outstanding Scholar Fellowship and Best Ph.D. Thesis awards from UC Santa Barbara, the CRII and CAREER awards from the National Science Foundation, the Young Investigator Award from the Air Force Office of Scientific Research, and the 2023 Donald P. Eckman award from the American Automatic Control Council. His research interests are in feedback control, hybrid and adaptive dynamical systems, real-time optimization, and network systems.
In an era where Artificial Intelligence (AI) is often seen as a universal solution for any complex problem, this presentation offers a critical examination of its role in the field of automatic control. To be concrete, I will focus on Optimal Control techniques, navigating through its history and addressing the evolution from its traditional model-based roots to the emerging data-driven methodologies empowered by AI.

The presentation will delve into how the theoretical underpinnings of Optimal Control have been historically aligned with computational capabilities, and how this alignment has shifted over the years. This juxtaposition of theory and computation motivates a deeper investigation into the diminishing relevance of certain traditional control methods amidst the AI revolution. We will critically examine scenarios where AI-driven approaches could outperform classical methods, as well as cases where the hype surrounding AI overshadows its actual utility.

The talk will conclude with a nuanced view of state-of-the-art optimal control methods in practical applications including self-driving cars, advanced robotics and energy efficient systems. From this perspective, we will identify and explore future potential directions for the field, including the design of learning control architectures which seamlessly integrate predictive capabilities at every level, focusing on systems that can autonomously refine their performance over time through continuous learning and interaction with their environment.
Francesco Borrelli received his ‘Laurea' degree from the University of Naples Federico II', Italy in 1998, and his PhD from the Automatic Control Laboratory at ETH-Zurich, Switzerland in 2002. He is currently a Professor at the Department of Mechanical Engineering at the University of California, Berkeley, USA, where he conducts research in the field of predictive control.

Professor Borrelli has authored over 200 publications in the field of predictive control and is the author of the book Predictive Control, published by Cambridge University Press. He has received several awards for his contributions to the predictive control field, including the 2009 NSF CAREER Award, the 2012 IEEE Control System Technology Award, and was elected IEEE Fellow in 2016. In 2017, he was awarded the Industrial Achievement Award by the International Federation of Automatic Control (IFAC) Council.

Professor Borrelli has been a consultant for major international corporations since 2004, with his recent industrial activities focusing on the application of predictive control in self-driving vehicles, utility scale solar power plants, automotive control systems, and building energy efficiency control. He was the founder and CTO of BrightBox Technologies Inc, a company focused on cloud-computing optimization for autonomous systems, and was the co-director of the Hyundai Center of Excellence in Integrated Vehicle Safety Systems and Control at UC Berkeley. He is also the founder of WideSense Inc., a company focused on E-Mobility.

Professor Borrelli's research interests include model predictive control, learning, and their application to robotics, transportation, and energy control systems.
AACC AWARDS

The American Automatic Control Council sponsors various awards. These awards are given to recognize excellence in scientific, technological, or educational contributions to automatic control. Congratulations to this year’s winners!

Donald P. Eckman Award

Mengdi Wang, Princeton University
For extraordinary contributions to the intersection of control, dynamic systems, machine learning, and information theory.

Mengdi Wang is associate professor at the Center for Statistics and Machine Learning, Department of Electrical and Computer Engineering, Department of Computer Science (by courtesy) and the Omenn-Darling Bioengineering Institute (by courtesy) at Princeton University. Mengdi received her PhD in EECS from MIT in 2013, where she worked with Dimitri P. Bertsekas at the Laboratory for Information and Decision Systems. She was a visiting research scientist at DeepMind, Institute of Advanced Studies, and Simons Institute on Theoretical Computer Science. Mengdi is currently leading Princeton's AI Accelerated Innovation Initiative, and is also affiliated with the Princeton Language+Intelligence Initiative. She works on reinforcement learning, generative AI and LLM + RL agents for bio and general science applications. She was Program Chair for ICLR 2023 and Senior AC for Neurips, ICML, COLT.
Richard E. Bellman Control Heritage Award

Naomi Ehrich Leonard, Princeton University

For fundamental contributions to geometric control theory, networked multiagent systems, and for bridging control theory with ecological systems, neuroscience, and the arts.

Naomi Ehrich Leonard is Chair and Edwin S. Wilsey Professor of Mechanical and Aerospace Engineering at Princeton University. She is associated faculty in Princeton’s Program in Applied and Computational Mathematics, Biophysics Program, and the Princeton Neuroscience Institute. During 2013-2023, she directed Princeton’s Council on Science and Technology. She is Founding Editor of the Annual Review of Control, Robotics, and Autonomous Systems. Leonard received her BSE in Mechanical Engineering from Princeton University in 1985. From 1985 to 1989 she worked as an engineer in the electric power industry. She received her PhD in Electrical Engineering from the University of Maryland in 1994. Leonard is a MacArthur Fellow, a member of the American Academy of Arts and Sciences, and a Fellow of the ASME, IEEE, IFAC, and SIAM. Previous honors include the 2023 IEEE Control Systems Award, the IEEE Control Systems Society’s 2017 Hendrik W. Bode Lecture Prize, the ASME’s 2014 Nyquist Lecture Prize, the American Automatic Control Council’s 2020 John R. Ragazzini Education Award and 2022 O. Hugo Schuck Best Paper Award (with S. Park), and the IFAC’s 1999 Automatica Best Paper Award. Leonard works in control theory, nonlinear dynamics, and geometric mechanics. She was among the first to investigate the simple rules that enable individual agents—whether living organisms or robotic vehicles—to work together in groups by coordinating decision-making, sensing, and motion. In the early 2000’s, she led a multidisciplinary team on the development and deployment of a first-of-its-kind automated and adaptive ocean observing system featuring a coordinated network of underwater gliders. Leonard has used control theory to make contributions in a range of disciplines with collaborators in oceanography, ecology and evolutionary biology, neuroscience, and the arts.
John R. Ragazzini Education Award

John Hedengren, Brigham Young University

For contributions to control education with the Arduino-based Temperature Control Lab, Gekko Optimization Suite software, interactive online resources, videos, and open-access APMonitor online courses for programming, control, and optimization.

Dr. John Hedengren is a Professor at Brigham Young University in the Chemical Engineering Department. He leads the BYU PRISM group with a focus on physics-informed machine learning for optimization of energy systems, unmanned aircraft, and drilling. He led the development of the Temperature Control Lab that is used by many universities for process control education. His publications span topics of data science, machine learning, carbon capture, unmanned aerial systems, and predictive control. His highest cited paper is the Gekko Optimization Suite as a platform for engineering optimization and model predictive control. Beyond his academic pursuits, Dr. Hedengren is actively involved in professional service. He is a CACHE Trustee, develops webinars for AIChE CAST division, and is the Communications Chair for the American Automatic Control Council. He is chair of the IEEE CSS Technical Committee on Control Education to promote public awareness, university education, and continuing education related to control. The committee develops laboratory experiments, computer-aided learning, and the use of distance and virtual education technologies to highlight the cross-disciplinary nature of control. He has a PhD from the University of Texas at Austin coupled with a 7-year tenure in the chemical industry. His expertise has been recognized by the Society of Petroleum Engineers where he served as a Distinguished Lecturer. He delivers university and professional education on control, optimization, and machine learning through APMonitor online resources. He is the recipient of the 2014 AIChE David Himmelblau Award and the 2018 AIChE Computing Practice Award.
Babatunde A. Ogunnaike Control Practice Award

Thomas A. Badgwell, University of Texas, Austin

For lifetime achievement in the development and application of Model Predictive Control technology, and for leadership in the international process control community.

Thomas A. (Tom) Badgwell, PhD, PE, is a Professor of Practice in the McKetta Department of Chemical Engineering at The University of Texas at Austin. He earned a BS degree from Rice University and MS and PhD degrees from the University of Texas at Austin, all in Chemical Engineering, and he is registered as a Professional Engineer in Texas. Tom’s career has focused on modeling, optimization, and control of chemical processes, with past positions at Setpoint, Fisher/Rosemount, Rice University, Aspen Technology, and ExxonMobil. He is a co-founder of Collaborative Systems Integration, an Austin-based startup providing systems integration services and software products for Open Process Automation (O-PAS) based systems. Tom is a Fellow of the American Institute of Chemical Engineers (AIChE) and a past Director of the Computing and Systems Technology (CAST) Division, from which he received the Computing Practice Award in 2013. He is also a member of the IEEE Control System Society, in which he serves as a Distinguished Industrial Lecturer for 2024. Tom was inducted into the Control Global Process Automation Hall of Fame in 2022. He has served as an Associate Editor for the Journal of Process Control, as a Member of the IFAC Industry Committee, and is presently the Vice Chair, Industry, on the IFAC Technical Committee (6.1) on Chemical Process Control. Tom served as an Industrial Trustee of the Computer Aids in Chemical Engineering (CACHE) Corporation, and as the Co-Chair of the inaugural CACHE-sponsored Foundations Of Process Analytics and Machine learning (FOPAM) conference in 2019. He has 5 patents, and his 25 refereed publications have received over 11,000 citations.
O. Hugo Schuck Best Paper Award (Application)

Iman Nodozi, Jared O’Leary, Ali Mesbah, Abhishek Halder

Iman Nodozi is a PhD student in Electrical and Computer Engineering with the University of California at Santa Cruz, USA. He received his BS degree in Electrical Engineering from the Hamedan University of Technology, Hamedan, Iran, in 2013, and his M.S. degree in Electrical Engineering from Imam Khomeini International University, Qazvin, Iran, in 2016. His primary research interests include stochastic systems, control, optimization, and machine learning. At UC Santa Cruz, he has received the Baskin School of Engineering Dissertation Year fellowship (2023-24) and the Regent's Fellowship (2019-20).

Jared O’Leary earned a PhD in Chemical Engineering from UC Berkeley in August 2022, where he worked on characterizing, modeling, and controlling colloidal self-assembly systems, which demonstrate intrinsically stochastic and nonlinear dynamics. Jared's thesis work aimed to uncover a deeper mechanistic understanding of colloidal self-assembly by investigating strategies based on machine learning and optimal control for (i) quantifying and classifying colloidal self-assembly system states, (ii) learning tractable stochastic dynamical models of colloidal self-assembly dynamics, and (iii) learning control policies that dynamically change external actuators to guide colloidal self-assembly. Jared was recognized for his thesis work in 2021 by being named a Director's Student Presentation Award Finalist for the Computing & Systems Technology Division (CAST) of the American Institute of Chemical Engineers (AIChE). Jared's research at UC Berkeley was supported by the Achievement Rewards for College Scientists (ARCS) Fellowship. Prior to UC Berkeley, Jared worked at Theranos for three years as a Systems Integration and Validation Engineer and Team Lead. Prior to Theranos, Jared earned a B.S. in Chemical Engineering with Honors and Distinction from Stanford University, where he won the Michel Boudart Award for Overall Excellence and the Channing Robertson Outstanding Junior Awards from Stanford’s Chemical Engineering department. Currently, Jared is the CEO and Co-Founder of SirenOpt, a seed-stage start-up
company that makes a real-time micro- and nano-materials metrology platform based on cold atmospheric plasmas. Through SirenOpt, Jared is a 2023 Activate Berkeley Fellow, which allows Jared and SirenOpt to actively collaborate with the Lawrence Berkeley National Lab. Outside of engineering, Jared enjoys watching football and basketball, attending concerts, and playing board games. Jared was born in Oakland, CA and was raised in nearby Contra Costa County.

Ali Mesbah is an Associate Professor of Chemical and Biomolecular Engineering at the University of California at Berkeley. Before joining UC Berkeley, Dr. Mesbah was a senior postdoctoral associate at MIT. He holds a Ph.D. degree in Systems and Control and a Master’s degree in Chemical Engineering, both from Delft University of Technology. Dr. Mesbah is a senior member of the IEEE and AIChE. He serves on the Editorial Boards of the IEEE Transactions on Control Systems Technology, IEEE Control Systems Letters, and IEEE Transactions on Radiation and Plasma Medical Sciences. Dr. Mesbah is recipient of the Alexander von Humboldt Research Fellowship in 2023, the Best Application Paper Award of the IFAC World Congress in 2020, the AIChE’s 35 Under 35 Award in 2017, the IEEE Control Systems Outstanding Paper Award in 2017, and the AIChE CAST W. David Smith, Jr. Publication Award in 2015. His research interests lie at the intersection of optimal control, machine learning, and applied mathematics, with applications to learning-based analysis, optimization, and predictive control of materials processing and manufacturing systems.

Abhishek Halder is an Associate Professor in the Department of Aerospace Engineering at Iowa State University, and a Visiting Associate Professor in the Department of Applied Mathematics at University of California (UC) Santa Cruz, USA. He served as an Assistant Professor in the Department of Applied Mathematics, and an affiliated faculty in the Department of Electrical and Computer Engineering at UC Santa Cruz. Before that he held postdoctoral positions in the Department of Mechanical and Aerospace Engineering at UC Irvine, and in the Department of Electrical and Computer Engineering at Texas A&M University. He obtained his Bachelors and Masters from Indian Institute of Technology (IIT) Kharagpur in 2008, and Ph.D. from Texas A&M University in 2014, all in Aerospace Engineering. His research interests are in stochastic systems, control and optimization with application focus on large scale cyber-physical systems. He is a co-founder of the annual NorCal Control Workshop that
brings together systems-control researchers from academia and industry in the Northern California region fostering collaboration and professional networking. He is the creator and instructor for the course "Feedback Control" in the California State Summer School for Mathematics & Science (COSMOS) which teaches feedback control theory to 8-11 graders without using calculus or linear algebra. His research with students and collaborators has been recognized with several awards including Applied Mathematics Research Award from UC Santa Cruz, Outstanding Doctoral Student Award from Texas A&M University, and Best Dual Degree Thesis Award from IIT Kharagpur. Abhishek is a Senior Member of IEEE.
O. Hugo Schuck Best Paper Award (Theory)

Xiangyuan Zhang, Bin Hu, Tamer Basar
"Learning the Kalman Filter with Fine-Grained Sample Complexity," 2023 ACC Proceedings, pp. 4549-4554.

Xiangyuan Zhang is a Ph.D. Candidate in the Department of Electrical and Computer Engineering at the University of Illinois Urbana-Champaign (UIUC), advised by Prof. Tamer Başar. He obtained a B.S. degree in Computer Engineering from UIUC in 2020. His research aims to integrate control theory, reinforcement learning, optimization, and game theory to enable large-scale intelligent autonomy. Xiangyuan received an IEEE CDC Outstanding Student Paper Award (2023), an IFAC World Congress Young Author Prize Honorable Mention (2023), an IPIN Best Student Paper Award Finalist (2018), and several fellowships at UIUC. He spent summers at Apple and Mitsubishi Electric Research Laboratories.

Bin Hu serves as an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Illinois Urbana-Champaign (UIUC) and holds an affiliation with the Coordinated Science Laboratory. His research is dedicated to establishing fundamental connections between control and machine learning. His current areas of interest include: 1) system and control tools for the robustness and safety of large foundation models, 2) the interplay between large language models and control, 3) the connections between robust control and reinforcement learning, and 4) control-theoretic tools for the analysis and design of iterative algorithms in optimization and learning. Bin earned his B.S. degree in Theoretical and Applied Mechanics from the University of Science and Technology of China in 2008, and his M.S. degree in Computational Mechanics from Carnegie Mellon University in 2010. He received his Ph.D. in Aerospace Engineering and Mechanics from the University of Minnesota in 2016. Between July 2016 and July 2018, Bin worked as a postdoctoral researcher in the Wisconsin Institute for Discovery at the University of Wisconsin-Madison. In 2021, Bin received the NSF CAREER award and the Amazon Research Award.
Tamer Başar has received B.S.E.E. from Robert College, Istanbul, and M.S., M.Phil, and Ph.D. degrees in engineering and applied science from Yale University. After stints at Harvard University, Marmara Research Institute (Gebze, Turkey), and Boğaziçi University (Istanbul), he joined the University of Illinois Urbana-Champaign (UIUC) in 1981, where he is currently Swanlund Endowed Chair Emeritus, CAS Professor Emeritus of ECE, and Research Professor at CSL and ITI. At Illinois, he has served as Director of the Center for Advanced Study (2014-2020), Interim Dean of Engineering (2018), and Interim Director of the Beckman Institute (2008-2010). He is a member of the US National Academy of Engineering and a Fellow of the American Academy of Arts and Sciences; and Fellow of IEEE, IFAC, SIAM, and AAAI. He has served as President of the IEEE CSS, Founding President of the International Society of Dynamic Games (ISDG), and President of AACC. He has received several awards and recognitions over the years, including the IEEE CSS Bode Lecture Prize (2004), IFAC’s Quazza Medal (2005), AACC’s Bellman Control Heritage Award (2006), ISDG’s Isaacs Award (2010), the IEEE Control Systems Technical Field Award (2014), Medal of Science of Turkey (1993), IEEE Millennium Medal (2000), and Wilbur Cross Medal from Yale University (2021). He has also received honorary doctorates and professorships from a number of international institutions, including KTH Royal Institute of Technology (Stockholm); Tsinghua, Shandong, and Northeastern Universities (China); Boğaziçi and Doğuş Universities (Istanbul); and NAS of Azerbaijan. He was Editor-in-Chief of the IFAC Journal Automatica between 2004 and 2014, and is currently editor of several book series. He has contributed to the fields of systems, control, communications, optimization, networks, and dynamic games, and has current research interests in stochastic teams, games, and networks (with finite- and infinite-population models); multi-agent systems and learning; data-driven distributed optimization; epidemics modeling and control over networks; strategic information transmission, spread of disinformation, and deception; security and trust; energy systems; and cyber-physical systems.
CONFERENCE INFORMATION

REGISTRATION

Registration is mandatory for all conference and workshop participants. Personal badges will be provided to identify registered participants. On-site registration and registration packet pick-up for all advanced registrations may be done at the conference registration desk. The Registration Desk is scheduled to be open during the following hours:

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, July 8</td>
<td>12:00 – 17:00</td>
</tr>
<tr>
<td>Tuesday, July 9</td>
<td>8:00 – 19:00</td>
</tr>
<tr>
<td>Wednesday, July 10</td>
<td>8:00 – 17:00</td>
</tr>
<tr>
<td>Thursday, July 11</td>
<td>8:00 – 17:00</td>
</tr>
<tr>
<td>Friday, July 12</td>
<td>8:00 – 16:00</td>
</tr>
</tbody>
</table>

Included in the three-day conference registration fee is full access to the conference technical program, including access for downloading the conference proceedings; tickets to the opening and closing receptions; coffee break refreshments; and access to a mobile-friendly technical program with links to papers and available videos. Member and Non-Member registration also includes the conference banquet. Registration fees are shown in the table below. Registrants who are members of any of the American Automatic Control Council Societies (AIAA, AIChE, ASCE, ASME, IEEE, INFORMS APS, ISA, SCS and SIAM) may register at the Member rate.

<table>
<thead>
<tr>
<th>Registration Categories</th>
<th>Advance Registration Fee (by June 1st)</th>
<th>On-Site or after June 1st Registration Fee</th>
<th>Proceedings (Access)</th>
<th>Dinner Banquet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>$540</td>
<td>$650</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Non-Member</td>
<td>$680</td>
<td>$790</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Student/Retiree</td>
<td>$270</td>
<td>$325</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>One day registration</td>
<td>$400</td>
<td>$400</td>
<td>Not included</td>
<td>Not included</td>
</tr>
</tbody>
</table>

Conference proceedings can be purchased for $15 on a USB drive. Printed Full Program Booklet (including detailed information for all sessions and papers): $15 Additional conference banquet tickets can be purchased for $120. Paper upload for authors is available only with Member and Non-Member registration; up to 4 papers can be uploaded for each registration.
Workshop registration fees are shown in the table below.

<table>
<thead>
<tr>
<th>Registration Categories</th>
<th>Advanced Registration (until June 1st)</th>
<th>On-site Registration (after June 1st)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Member/Non-member</td>
<td>Student/Retiree</td>
</tr>
<tr>
<td>Full day workshop</td>
<td>$240</td>
<td>$120</td>
</tr>
<tr>
<td>Half day workshop</td>
<td>$130</td>
<td>$65</td>
</tr>
</tbody>
</table>
INTERNET ACCESS
Basic wireless internet access is available free of charge in all conference and meeting rooms.

COFFEE BREAKS
Coffee breaks will be held in the Dockside Foyer, Pier/Harbour Foyer, and the Frontenac area as follows:

- Wednesday: 9:30 – 10:00 and 15:00 – 15:30
- Thursday: 9:30 – 10:00 and 15:00 – 15:30
- Friday: 9:30 – 10:00 and 15:00 – 15:30

EXHIBITS
Please take time during the conference to visit our exhibitors in the Frontenac area! Please refer to the Sponsors page for more details.

OPENING RECEPTION
Tuesday July 9, 18:30 – 20:30, Harbour Ballroom

PLENARY SESSIONS
Wednesday, Thursday, and Friday morning plenaries will be held between 8:30 – 9:30 in the Metro Ballroom. On Thursday, the Eckman Plenary will be held between 10:00 – 11:00 in the Metro Ballroom.

AWARDS CEREMONY
Thursday July 11, 11:45 – 12:45, Frontenac Ballroom

All conference attendees are encouraged to attend the announcements of the annual AACC and ACC awards. Come celebrate accomplishments in our field!
CONFERENCE BANQUET

Thursday July 11, 18:30 – 21:30, Royal Ontario Museum

The Royal Ontario Museum (ROM), located at 100 Queens Park, Toronto, is ~3.5km from the conference hotel. The easiest way to get there is using the Subway, which will take approximately 20 minutes door-to-door:

1. Walk from the Westin Harbour Castle to Union Station (700m walk)
2. Take the Yonge-University Line to Museum Station (5 stops)
3. Exit onto Queen's Park and cross the street to enter the ROM

The fare is $3.30 CAD, and payment with credit card or Apple Pay is accepted.

Union Station can also be reached from the hotel using the 510A (Spadina to Union Station) streetcar. For this, walk 100m to the Queens Quay/Ferry Docks Station, and then ride the streetcar one stop to Union station. A map that shows the subway route is provided below.

Alternatively, attendees can use Uber/Lyft or a Taxi, costing around $15 CAD and taking 20–25 minutes during rush hour.

A banquet ticket is included with the registration packets for Member and Non-Member registrants. Additional conference banquet tickets can also be purchased for $120 USD each. Children under 4 are free.
CLOSING RECEPTION
Friday July 12, 18:30 – 20:30, Harbour Ballroom

DEPENDENT CARE REIMBURSEMENT
The American Automatic Control Council (AACC) offered funds to partially offset the expense of dependent care for registrants at the American Control Conference (ACC) 2024. Funds were allocated not to exceed $500 per applicant. Highest priority was given to conference registrants who are presenting a paper(s), or in a workshop or special session. See the conference website for more information.
VENUE AND LOCAL INFORMATION

The 2024 ACC takes place at the Westin Harbour Castle, located on the waterfront in downtown Toronto. The hotel is within walking distance of many of Toronto’s most popular sites, including the CN Tower, the St. Lawrence Market, the Toronto theater district, the Toronto Blue Jays Ballpark, the Distillery District, and vibrant and diverse neighborhoods like Kensington Market. All presentations and meetings are held in the conference hotel.

Toronto is Canada’s largest city and the 4th most populous city in North America. Located along Lake Ontario’s northwestern shore, Toronto is a world leader in business, finance, technology, entertainment, and culture. Its large population of immigrants from all over the globe has also made Toronto one of the most multicultural cities in the world.

Toronto is easy to get around, with the subway running through the downtown core, and a network of streetcars to help you access the varied neighborhoods. Come and explore the city, from the financial district to upscale shopping in Yorkville, to the eclectic mix of bars and coffee shops in Kensington Market. Attendees are encouraged to enjoy the city and surrounding area with their family members. Due to its patchwork of urban parks, Toronto is known as “a city within a park.” Attractions include High Park, which spans over 400 acres, and Toronto Island Park, accessible by ferry from downtown. The city has a booming food scene and has been ranked the most diverse food scene worldwide.
TRANSPORTATION

Most attendees will fly into Toronto Pearson International Airport (YYZ), which has non-stop service to over 155 destinations worldwide. From there, transportation to the conference is straightforward: the UP Express train is a 25-minute ride to Union Station in downtown Toronto, and it runs every 15 minutes. Alternatively, one can take a 30-minute Taxi or Uber directly to the conference venue.

An alternative for some attendees is the Billy Bishop Toronto City Airport (YTZ), which has non-stop flights to over 20 destinations in Canada and in the United States. This airport is just 2km from the conference hotel and can be accessed via Taxi/Uber, the 509 Harbourfront Eastbound streetcar, or directly walking.
EXHIBITORS AND SPONSORS

ACC 2024 thanks all of our sponsors for their generous support of our conference. Many of our sponsors will have exhibits at the conference that we encourage everyone to visit. Exhibits will be open 8:00 to 17:00 on Wednesday and Thursday and 8:00 to 12:00 on Friday.

GOLD SPONSORS

Boeing
Boeing is the world’s largest aerospace company and leading manufacturer of commercial jetliners and defense, space and security systems. A top U.S. exporter, the company supports airlines and U.S. and allied government customers in 150 countries. Boeing products and tailored services include commercial and military aircraft, satellites, weapons, electronic and defense systems, launch systems, advanced information and communication systems, and performance-based logistics and training.

Elsevier
Elsevier is a global information analytics business that helps scientists and clinicians to find new answers, reshape human knowledge, and tackle the most urgent human crises. For 140 years, we have partnered with the research world to curate and verify scientific knowledge. Today, we’re committed to bringing that rigor to a new generation of platforms. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 39,000 e-book titles and many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers.
Halliburton
Halliburton is one of the world’s leading providers of products and services to the energy industry. Founded in 1919, we create innovative technologies, products, and services that help our customers maximize their value throughout the life cycle of an asset and advance a sustainable energy future. We combine technology, services and execution expertise to assist our customers with hydrocarbons location, geological data management, drilling and formation evaluation, well construction and completion, and production optimization throughout the life of their asset.

MathWorks
The MATLAB and Simulink product families are fundamental applied math and computational tools at the world’s educational institutions. Adopted by more than 6,500 universities and colleges, MathWorks products accelerate the pace of learning, teaching, and research in engineering and science. MathWorks products help prepare students for careers in industry worldwide, where the tools are widely used for data analysis, mathematical modeling, and algorithm development in collaborative research and new product development. Application areas include data analytics, mechatronics, communication systems, image processing, computational finance, and computational biology.

Mitsubishi Electric
Mitsubishi Electric Research Laboratories (MERL), located in Cambridge, MA, is the North American R&D organization for Mitsubishi Electric Corporation, a $40B global manufacturer of electrical products including elevator and escalators, HVAC systems, electrical power systems, satellites, factory automation equipment, automotive electronics and visual information systems. Controls researchers at MERL collaborate with corporate R&D laboratories, business units in Japan and academic partners around the world to develop new control algorithms and control technologies that extend the capabilities and the performance envelope of these systems.

For students who are interested in pursuing an exciting summer of research, please check out our internship program and learn more on our Website, Facebook, LinkedIn or @MERL_news.
MERL interns work closely with top researchers, and gain valuable industry experience – at an impressive 1:1 intern to researcher ratio. Internships are expected to lead to publications in major conferences and journals. We also recently started a PostDoc program. For PhD graduates interested in applying please see our website www.merl.com

We offer competitive compensation and relocation assistance. Boston is a fantastic student-oriented city, home to some of the best universities in the world.

The summer season is especially lively as MERL and Boston are teeming with researchers and visitors from all over the world.

Quanser

Quanser is the world leader in innovative technology for engineering education and research. With a heritage in creating leading-edge platforms for controls, mechatronics, and robotics, Quanser has built a legacy over the past 35 years of transformational solutions that bring emerging technologies including autonomous robotics, IoT, self-driving, and virtual reality to students worldwide. Quanser is unique as the only commercial organization that offers a comprehensive, academically sound platform for delivering programs that push the boundaries of traditional engineering education and research. Through a wide network of academic partners and faculty equivalent researchers and course designers, Quanser works with institutions to solve the challenges of modern engineering as true colleagues as opposed to conventional vendors.
SILVER SPONSORS

General Motors
We envision a future of zero crashes, zero emissions and zero congestion, and we have committed ourselves to leading the way toward this future. General Motors has been pushing the limits of transportation and technology for over 100 years. Today, we are in the midst of a transportation revolution. And we have the ambition, the talent and the technology to realize the safer, better and more sustainable world we want. As an open, inclusive company, we’re also creating an environment where everyone feels welcomed and valued for who they are. One team, where all ideas are considered and heard, where everyone can contribute to their fullest potential, with a culture based in respect, integrity, accountability and equality. Our team brings wide-ranging perspectives and experiences to solving the complex transportation challenges of today and tomorrow. At General Motors, innovation is our north star. As the first automotive company to mass-produce an affordable electric car, and the first to develop an electric starter and air bags, GM has always pushed the limits of engineering. We are General Motors. We transformed how the world moved through the last century. And we’re determined to do it again as we redefine mobility to serve our customers and shareholders and solve societal challenges.

Multidisciplinary Digital Publishing Institute (MDPI)
A pioneer in scholarly, open access publishing, MDPI has supported academic communities since 1996. Based in Basel, Switzerland, MDPI has the mission to foster open scientific exchange in all forms, across all disciplines. Our 437 diverse and open access journals, including 428 peer-reviewed journals and 9 conference journals, are supported by more than 295,000 academic experts who share our mission, values, and commitment to providing high-quality service for our authors. We serve scholars from around the world to ensure the latest research is freely available and all content is distributed under a Creative Commons Attribution License (CC BY).
Society for Industrial and Applied Mathematics (SIAM)
SIAM publishes textbooks and monographs in print and electronic format. Visit our booth to browse our titles, all available at discounted conference pricing. SIAM partners with authors to publish books of outstanding quality and accessible pricing. If you’re interested in writing a book, please contact SIAM Executive Editor greenspan@siam.org. More info: https://www.siam.org/Publications/Books.

Unitree Robotics
UNITREE ROBOTICS, established in 2016, promoted robots to the global market in 2017. Unitree was one of the earliest manufacturers of quadruped robots in the world, and an outstanding pioneer in the marketization of global high-performance quadruped robots who is fully committed to promoting mobile robots to truly enter people's lives. With self-developed core components, motion control algorithms, robot perception system, and other self-developed technologies, Unitree Robotics has cooperated with a number of top universities and industry-leading technology enterprises. It not only provides customers with technical support such as software development and mechanical programming, but also helps customers configure a lot of external equipment. Quadruped robots have been used in many application scenarios such as security inspection, ground exploration, and detection. At present, hundreds of brands are equipped with Unitree quadruped robot, and many application areas such as petrochemical, security, electric power and education use the mature product solutions and technical support of Unitree Robotics.

Wiley
Wiley champions those who see knowledge as a force for good. A trusted leader in research and learning, our pioneering solutions and services are paving the way for knowledge seekers as they work to solve the world’s most important challenges. Around the globe, we break down barriers for innovators, empowering them to publish and advance discoveries in their fields, evolve their workforces, and shape minds through teaching and learning. Together, we are unlocking the creation and curation of knowledge for all, transforming today’s biggest obstacles into tomorrow’s brightest opportunities.
Whether you're already publishing your work or have ever considered it, we can help you achieve your goals. Why should I publish? Where should I publish? What topics are hot? Wiley book acquisitions editor Lisa McClain is available at ACC 2024 to answer all your questions. You can also email Lisa at emcclain@wiley.com if you don’t have time to stop by!
Franklin Open
Franklin Open is a peer-reviewed, gold open-access journal that focuses on the fields of engineering and applied mathematics. Franklin Open is a partner journal to the longstanding Journal of The Franklin Institute, which has been publishing scientific research and discoveries for almost 200 years. The journal was created to not only continue that legacy, but to provide a sustainable platform for new research to be widely disseminated from all voices in the scientific and academic communities. Franklin Open aims to publish high-quality manuscripts under such topics as, Complex Networks & Cyber-Physical Systems, Control Engineering & Robotics, Energy & Power Systems, Information & Communications, Data Science & Artificial Intelligence, Neural Networks & Learning Systems, and Speech, Image, & Signal Processing. We welcome new submissions as well as special issue proposals through our website. If you have any questions, please contact franklinopen@fi.edu.

Robust Engineering Systems
Our firm Robust Engineering Systems, LLC (referred to as RES going forward) developed a software named TAACSD Tool-Box (Transformation Allergic Approach Control Systems Design Tool-Box) which offers an innovative, new and novel, pure State Space MIMO based approach to design highly robust control systems much different from the current literature eigenvalue based MATLAB Control Systems Design Tool-Box designs being offered by the Mathworks company. The RES developed TAACSD Tool-Box, uses a US patent awarded (patent number 11,815,862 awarded in November 2023) Transformation Allergic (TA) Approach. It does not use eigenvalues as state variable convergence measures but instead uses Transformation Allergic Indices, which are always real scalars. RES developed TAA CSD Tool-Box offers much improved robustness to various uncertainties/perturbations such as real parameter variations, unmodeled dynamics, and accommodates time varying perturbations as well as multiple equilibrium points and errors in guidance commands and initial conditions together. TAA CSD Tool-Box assumptions are much different from the MATLAB CSD Tool-Box. Application areas of TAA CSD Tool-Box include Aero
SPECIAL SESSIONS

In addition to the main technical program, the conference includes breakfast-time, lunch-time, and evening special sessions on industry, outreach, education, family-friendly topics, emerging topics, and funding opportunities.

WEDNESDAY SPECIAL SESSIONS

Early Career Welcome Breakfast

Organizer: Anastasia Bizyaeva, Erfan Noorani, Jeffrey Chen, Philip Paré
Time: 7:30 – 8:30 Wednesday, July 10, 2024
Location: Pier 2

Graduate students, postdoctoral scholars, and early career researchers are warmly invited to a special breakfast session designed to kick off the first full day of the conference in a friendly and informal setting. This breakfast will be a perfect opportunity to meet new peers and to make a game plan for your conference agenda. It is also a chance to meet members of the newly formed NextCom committee within the Control Systems Society and learn about upcoming resources, workshops, and networking opportunities aimed at supporting early career members of our community.
Family-Friendly Session: STEM-Themed Animated Shorts and Games

Organizer: Helen Durand
Time: 10:00 – 11:30 Wednesday, July 10, 2024
Location: Dockside 1

This family-friendly session will consist of showing a STEM-related short story intended to be enjoyable by both older and younger audiences, followed by STEM-related games. This content will last approximately 30 minutes, repeated 3 times so that people can come through to enjoy it or repeat it. The age range being targeted will be preschool/pre-K to early elementary age range, though older audiences are also welcome and may enjoy the events. Parents or guardians are required to be present and always supervise their children.

An Overview of NSF Programs

Organizer: Yue Wang and Jordan Berg
Time: 11:00 – 12:30 Wednesday, July 10, 2024
Location: Pier 2

The National Science Foundation (NSF) offers multiple funding opportunities for investigators working in the field of controls, both within disciplinary programs in Engineering and other directorates, and through foundation-wide cross-cutting initiatives. This presentation will describe opportunities that are relevant to the robotics, dynamics and controls communities. The presentation will also describe programs targeted toward junior investigators, as well as guidelines for proposal preparation and NSF’s Intellectual Merit and Broader Impacts criteria. A question-and-answer session will follow the presentation.
Elsevier: How to get published - first steps in getting your work published in journals

Organizer: Kay Tancock
Time: 11:30 – 12:30 Wednesday, July 10, 2024
Location: Queen’s Quay 1

A guide to publishing within Elsevier's control and systems portfolio of journals for early career researchers. The session will elaborate on the most efficient ways of submitting a paper and give Early Career Researchers tips and tricks to ensure their research is more likely to be accepted. It will also include a 'Meet the Publisher' event where researchers can ask their publishing questions one-on-one with the publisher.

Social Justice and Control Theory: Bridging Engineering and Equity

Organizer: Satadru Dey, Damoon Soudbakhsh, Polina Ringler, Ankush Chakrabarty, Stephanie Stockar
Time: 11:30 – 12:30 Wednesday, July 10, 2024
Location: Dockside 2

A panel on "Social Justice and Control Theory" can provide a platform for discussing the intersection of control theory, engineering, and societal concerns related to equity, fairness, and social justice. The panel features experts from various fields, including control theory, engineering, ethics, and social justice advocacy. The objective is to help bridge the gap between the technical aspects of control theory and the ethical and societal considerations needed to ensure that control systems and technology contribute to a more equitable and just society. Furthermore, it should inspire collaboration and encourage engineers and technologists to integrate social justice in their work.
Tackling Control Problems with Open-Source Software in Julia and Python

Organizer: Jan Drgona, LaGrande Gunnell, Joshua Pulsipher, John Hedengren
Time: 11:30 – 13:00 Wednesday, July 10, 2024
Location: Bay

This 1.5-hour session will feature three informal tutorials (30 minutes each) that highlight the capabilities of prominent open-source software packages for posing and solving control problems in Python and Julia, namely NeuroMANCER, Gekko, and InfiniteOpt. These each will be led by a core developer of each package. In the context of control, NeuroMANCER provides a differentiable programming library for parametric model-based optimal control, Gekko provides optimization and machine learning methods for rigorous nonlinear model predictive control, and InfiniteOpt provides a flexible optimization interface for posing optimal control problems with uncertainty and novel modeling objects.

Women in Control Luncheon

Organizer: Afef Fekih and Dennice Gayme
Time: 12:00 – 13:30 Wednesday, July 10, 2024
Location: Pier 4 and Pier 5

The Women in Control Committee (WiC) is dedicated to empowering and promoting gender diversity in the Control Systems Society (CSS) by facilitating the development of mentoring and programs to promote the retention, recruitment, and growth of women CSS members. The WiC luncheon at ACC 2024 in Toronto, Canada provides the opportunity to network, discuss women's roles in CSS, inspire the next generation of female leaders, and foster collaborations to advance women's leadership. This special session will provide female researchers and professionals with the invaluable opportunity to network, seek guidance, and engage with senior faculty members and industry leaders.
Student Networking Event

Organizer: Mugdha Basuthakur, Chantel Lapins, Yasmine Marani, Sasha McKee, Jacob Anderson
Time: 17:30 – 19:30 Wednesday, July 10, 2024
Location: Metro W

The Student Networking special session aims to provide all interested students attending ACC 2024 the opportunity to receive valuable career advice from experts in industry, academia, and national laboratories. Moreover, it seeks to enhance student engagement in the conference and promote awareness of the benefits of involvement in the control community by offering a platform that facilitates connections with peers and the attending professionals. In the first 25 minutes of this structured event, the invited professionals will present their backgrounds and areas of interest.

This will be followed by 3 rounds of rotating round-table conversations where, in each round, 7-8 students will have the opportunity for open discussion with a professional for 20 minutes before moving to another table. The final 30 minutes are reserved for open social networking to allow students to connect with peers and the remaining invited professionals with whom they did not interact during the round-table discussions. An assortment of snacks will be provided!
THURSDAY SPECIAL SESSIONS

Student Breakfast (Part I): Security and Privacy of the Next-Generation Cyber-Physical Systems

Organizer: Sribalaji Coimbatore, Tao Li, Aris Kanellopoulos, Christos Mavridis, Dipankar Maity

Time: 7:30 – 8:30 Thursday, July 11, 2024
Location: Dockside 1

Students and early-career researchers are warmly invited to special breakfast sessions on Thursday and Friday. Sponsored by the Technical Committee on Security and Privacy, the student-organized sessions will explore a new landscape of cyber-physical systems (CPS) research by bringing together young scholars working on the security and privacy of CPS and their applications in diverse areas. In addition to technical presentations, this student-organized workshop features a panel discussion and experience-sharing mixer on academic job-seeking and career development. The primary objective of these sessions is to engage early-career researchers from multiple topical areas in control society and create a vibrant and sustainable research thrust dedicated to the security, privacy, and resiliency of the next-generation cyber-physical systems.
Getting Funded by NSF: Proposal Preparation and the Merit Review Process

Organizer: Yue Wang and Jordan Berg
Time: 11:30 – 13:15 Thursday, July 11, 2024
Location: Bay

So, you think you have a great research idea, now how do you get funding from the National Science Foundation (NSF) to do the work? A well-scoped and written proposal is instrumental to successful submission. This session targets junior faculty and researchers who might be new to NSF and describes detailed guidelines and practical advice for proposal preparation. The presenter will go over NSF review process and Intellectual Merit and Broader Impacts criteria, as well as share most common mistakes made by the Primary Investigators when submitting a proposal. Question-and-answer session will follow the presentation.

Fostering Justice, Diversity, Equity, and Inclusion (JEDI) in the Controls Community

Organizer: Victor Zavala and Karen Rudie
Time: 11:30 – 12:30 Thursday, July 11, 2024
Location: Queen’s Quay 1

This session will aim to bring together students and researchers from industry and academia to discuss ideas on how we can promote Justice, Diversity, Equity, and Inclusion (JEDI) in the control field, as a way to foster representation and a sense of belonging for all members of the controls community. The session will involve a panel composed of researchers, who will share their experiences in promoting JEDI initiatives. All members of the ACC community, including underrepresented minorities, and welcome to attend this event.
How to Make a STEM Outreach Film

Organizer: Helen Durand
Time: 11:30 – 12:30 Thursday, July 11, 2024
Location: Dockside 1

This session will discuss the use of film in STEM outreach. We will cover our experience with topics such as: 1) how to start such a film; 2) how to see if the film is “working”; 3) how to move into the animation process (even if you are not an artist). We will discuss potentially useful software as well as aspects of the editing process. We will focus on filmmaking in the case of wanting to tell a story where STEM plays a role in the plot, but the film is not directly a tutorial on STEM concepts (i.e., indirect teaching of STEM through the plot and characters).

The Boeing Company

Organizer: Kevin Wise, Heather Hussain, Mark Ward, Joseph Gaudio, Ryan Ratliff
Time: 12:00 – 13:15 Thursday, July 11, 2024
Location: Queen’s Quay 2

As a leading global aerospace company, Boeing develops, manufactures and services commercial airplanes, defense products and space systems for customers in more than 150 countries. As a top U.S. exporter, the company leverages the talents of a global supplier base to advance economic opportunity, sustainability and community impact. Boeing’s diverse team is committed to innovating for the future, leading with sustainability, and cultivating a culture based on the company’s core values of safety, quality and integrity. Join our team and find your purpose at boeing.com/careers. Boeing wants to get to know you and what legacy you want to create that will change the world. Come to the Boeing special session and meet the team!
Industry Lunch: MERL: Fundamental Research with Real-World Impact

Organizer: Stefano Di Cairano, Karl Berntorp, Abraham Vinod, Avishai Weiss
Time: 12:00 – 13:15 Thursday, July 11, 2024
Location: Pier 2

Mitsubishi Electric Research Laboratories (MERL) is a leading research organization that conducts fundamental research for industrially motivated problems. MERL is a subsidiary of Mitsubishi Electric Corporation, a global manufacturer of a wide range of products including robots, automotive, HVAC, factory automation, electrical systems, and space systems. MERL researchers collaborate with corporate laboratories and academic partners from around the world to develop novel solutions to challenging problems.

In this talk we present an overview of research activities at MERL, including fundamental research in control and its application to a variety of future products. We discuss fundamental research including model predictive control and control of constrained systems, estimation and motion planning for autonomous systems, real-time optimization and integration of learning and control. Then, we describe how these fundamental research areas have impacted real world applications and products such as automated vehicles, drones, spacecraft, robots and navigation systems.

Students and faculty interested in collaborations and ideas exchange are encouraged to attend.
FRIDAY SPECIAL SESSIONS

Student Breakfast (Part II): Security and Privacy of the Next-Generation Cyber-Physical Systems

Organizer: Sribalaji Coimbatore, Tao Li, Aris Kanellopoulos, Christos Mavridis, Dipankar Maity
Time: 7:30 – 8:30, Friday, July 12, 2024
Location: Dockside 1

Students and early-career researchers are warmly invited to special breakfast sessions on Thursday and Friday. Sponsored by the Technical Committee on Security and Privacy, the student-organized sessions will explore a new landscape of cyber-physical systems (CPS) research by bringing together young scholars working on the security and privacy of CPS and their applications in diverse areas. In addition to technical presentations, this student-organized workshop features a panel discussion and experience-sharing mixer on academic job-seeking and career development. The primary objective of these sessions is to engage early-career researchers from multiple topical areas in control society and create a vibrant and sustainable research thrust dedicated to the security, privacy, and resiliency of the next-generation cyber-physical systems.
Feedback Screening of "Independence"

Organizer: Helen Durand
Time: 10:15 – 13:15, Friday, July 12, 2024
Location: Dockside 1

In this session, attendees will be able to watch a full-length film being created by Dr. Helen Durand called “Independence.” The film is a science fiction adventure. Dr. Lucas is at ethical odds with a number of colleagues due to his experiments in finding ways to mark the offenses of individuals against programmed moral standards, supposedly to improve their lives. Dr. Lucas’ research ideas at the intersection of science and morality have caused Dr. Fuertes serious issues. He is living a life of deception to avoid nearing death, trying to find some way to make up for his past and become free. This film may be appropriate for teenagers and above due to scientific discussions (with significant artistic liberty) and also violence in plot points, including murder, harm, and peril. This is an initial version of the script that will be presented in stop motion or storyboard format and is in the development stage. Your feedback is welcome. Get ready for moral values meets eigenvalues.

Navigating the Landscape of Innovation: Insights from Industry and Consulting

Organizer: Shreshta Rajakumar Deshpande and Yan Chen
Time: 11:30 – 12:30, Friday, July 12, 2024
Location: Bay

The dynamic landscape of innovation, research, and product delivery continuously evolves, presenting us with valuable lessons and insights. This special session aims to explore how one's perspective and priorities are influenced by the role they play in the innovation ecosystem: corporate, academic, or startup. The speaker/s will delve into the positive aspects, the challenges, and the less glamorous realities associated with each of these roles. Additionally, strategies for striking a balance between these perspectives will be discussed, to foster a more efficient and effective society.
Key topics of discussion include: shifting perspectives in problem perception and definition, decision-making dynamics in these different contexts, and roadmaps towards productive societal innovation.

Recent Systems and Control Research in Canada

Organizer: Yang Shi and James Richard Forbes
Time: 11:30 – 13:00, Friday, July 12, 2024
Location: Queen’s Quay 2

Over the years, researchers based in Canada have consistently made substantial contributions to the field of systems and control. This session aims to highlight the recent theoretical and technological breakthroughs achieved by these Canadian scholars and professionals in areas such as control, mechatronics, data analytics, intelligent systems, and automation. Beyond showcasing these innovations, our goal is to foster a platform for Canadian researchers to engage with and gain insights from their peers across institutions. We also hope to stimulate discussions among Canadian experts and their global counterparts, paving the way for potential collaboration.

Role of Learning and Control in Climate-Resilience of Power Grid

Organizer: Pramod Khargonekar
Time: 11:30 – 13:00, Friday, July 12, 2024
Location: Queen’s Quay 1

Extreme weather events, such as heat waves, cold waves, wildfires, and storms, are increased in intensity, frequency and duration and can have significant impacts on human health, infrastructure (such as power grid) and the environment. Power grids are undergoing massive transformation through large-scale integration of renewable energy resources, and distributed energy resources, while having to be more resilient during extreme weather events. Control and learning methods, not only have contributed to the operation and planning practices of power grids as we
know them today, but also can play even a bigger role in shaping the decarbonized and resilient grid of the future. This session will bring together a group of diverse experts to discuss the opportunities for and challenges of developing and integrating advanced control and learning technologies in the operation and planning of power grid.

MathWorks Lunch: Asynchronous Engineering Instruction and Increased Teaching Impact

Organizer: Melda Ulusoy, Craig Buhr, Christopher Lum
Time: 12:00 – 13:15, Friday, July 12, 2024
Location: Pier 2

This presentation will discuss various methodologies, challenges, and lessons learned related to teaching an engineering curriculum in an asynchronous fashion (aka a ‘flipped classroom’). This format has demonstrated significant benefits such as increased student engagement, greater flexibility in learning, and broadened impact/reach but simultaneously presents unique challenges such as additional instructor overhead and effort. Presenter will discuss how to encapsulate information and use social media platforms such as YouTube to build an online teaching presence that can be leveraged by students both inside and outside your home university. The discussion will also highlight how MATLAB and Simulink facilitate the teaching of various engineering topics such as controls, flight mechanics, and simulation. It will also discuss the application of these concepts/tools to industry problems. This session strives to provide educators with tools and processes to increase their teaching impact and enable knowledge sharing across a global population.
STUDENT PROGRAMS

STUDENT BEST PAPER AWARD SESSION

All five finalist papers (see below) will be presented during a special session on Wednesday, July 10, 15:30 – 17:30, in Pier 9. The winner will be selected by the Best Student Paper Awards Committee and will be announced at the AACC Awards Ceremony on Thursday, July 11, 11:45 – 12:45, Frontenac Ballroom.

STUDENT BEST PAPER AWARD FINALISTS

The 2024 ACC is pleased to continue the tradition of the Student Best Paper Award. All primary, first-listed authors of a regular contributed paper who were students at the time of submission were eligible. To be considered for the award, the paper was nominated by the student’s advisor in October 2023. The nominated papers were reviewed through the usual conference review process and by the Best Student Award Committee. Based on these reviews, the following five papers were selected as finalists for the Student Best Paper Award competition.

Michael Tang (Student Author), Miroslav Krstic, Jorge I. Poveda. On Fixed-Time Stability for a Class of Singularly Perturbed Systems Using Composite Lyapunov Functions, FrB21.4

Shida Jiang (Student Author), Junzhe Shi, Manashita Borah, Scott Moura. Weaknesses and Improvements of the Extended Kalman Filter for Battery State-Of-Charge and State-Of-Health Estimation, WeC06.4

Charis Stamouli (Student Author), Evangelos Chatzipantazis, George J. Pappas. Structural Risk Minimization for Learning Nonlinear Dynamics, ThC04.5
STUDENT TRAVEL GRANTS

The 2024 American Control Conference Organizing Committee offered partial support to students traveling to the 2024 ACC in Toronto.

The following two conditions were required for support:
- The applicant must have been enrolled as a student at the 2024 ACC paper submission deadline (September 30, 2023), and
- The applicant must register for the conference and present a paper.

The application deadline was February 18, 2024.

The ACC 2024 Organizing Committee thanks the National Science Foundation, American Automatic Control Council, Institute of Electrical and Electronics Engineers (IEEE), the American Society for Mechanical Engineers (ASME), Society for Industrial and Applied Mathematics (SIAM) and others for their support of student activities.

SPECIAL SESSIONS FOR STUDENTS

Please see details in the Special Sessions section above for the following events:

- **Early Career Welcome Breakfast**, 7:30 – 8:30 Wednesday, July 10, 2024, Pier 2
- **Student Networking Session**, 17:30 – 19:30 Wednesday, July 10, 2024, Metro W
- **Student Breakfast (Part I): Security and Privacy of the Next-Generation Cyber-Physical Systems**, 7:30 – 8:30 Thursday, July 11, 2024, Dockside 1
• **Student Breakfast (Part II): Security and Privacy of the Next-Generation Cyber-Physical Systems**, 7:30 – 8:30, Friday, July 12, 2024, Dockside 1
SELF-DRIVING CAR STUDENT COMPETITION

Location: Regatta Room

Students were encouraged to participate in the Self-Driving Car Student Competition, powered by Quanser, during the 2024 American Control Conference. The competition provides an excellent opportunity for students from around the globe to acquire leading-edge knowledge and develop critical problem-solving skills while also attracting and nurturing next-gen researchers. The competition committee has configured the self-driving challenge to highlight critical Control Systems concepts that will focus on real-time decisions, and feedback control systems that will result in fast and precise driving performance.

The competition was conducted in three stages:

STAGE 1 Virtual Design and Submission
STAGE 2 Algorithm Validation on Physical Vehicles
STAGE 3 On-site Demonstration and Competition

The tasks include but are not limited to: time to complete the path (circuit), accuracy of driving, timely reactions to stop signs and traffic lights, as well as avoidance of obstacles.

July 10, Practice Day, Full day event

- The student teams take this opportunity to practice in the actual competition environment.

July 11, Competition Day, Full day event (Regatta Room)

- 10:00 – 11:30 Team races
- 12:30 – 13:30 Championship and Award Ceremony
TUTORIAL SESSIONS

Tutorial sessions address the development and/or application of state-of-the-art control approaches and theory to real-world engineering applications. We are pleased to offer the following tutorial sessions at ACC 2024:

WeB08 - Advanced Methods in Diagnostics and Prognostics

Organizers: Ivan Castillo, The Dow Chemical Company
Zhenyu Wang, Dow Chemical
Imad Makki, Ford Motor Company

Time/Location: 13:30 – 15:00, Wednesday, July 10, 2024, Bay

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors/Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-14:15</td>
<td>Advanced Methods in Diagnostics and Prognostics</td>
<td>Fabian Mohr, Weike Sun, Richard D. Braatz</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>Prognostics for Chemical Processes</td>
<td>Ivan Castillo, Zhenyu Wang, Leo Chiang</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>Predictive Analytics for Chemical Processes</td>
<td>Joel Paulson</td>
</tr>
</tbody>
</table>

Fault diagnostics (FD, aka fault detection and identification, FDI) are critical for increasing the reliability and safety of dynamic systems. Fault detection’s main function is to determine whether there are faults or abnormal conditions in the system. The performance of fault detection systems can be evaluated based on fault detection sensitivity and the capability of detection with lower rates of false alarms. The purpose of fault identification is to identify the type of fault (i.e., sensor, actuator, or process), distinguish single and multiple faults, and estimate the size of the fault. FD/FDI systems are useful to monitor process performance and quickly identify the root cause of the issue that ultimately maintains the stability of the system. Fault prognostics aims to predict faults before they occur. The goal of fault prediction is to estimate how soon and how likely the fault will occur. A diverse range of FDI and fault prognostics methodologies can be found in the literature that can be classified into three main categories: first-principles, data-driven, and hybrid approaches. Diagnostics and prognostics have seen increasing applications across different industries, including automotive, batteries and chemical. As each industry deals with different systems (e.g., reactors vs. batteries,
generators vs vehicles), the challenges for each area have their own unique facets in terms of scales, complexity, uncertainty, understanding of physics of failure and data quantity and quality, etc. As a result, the development and deployment of diagnostics and prognostics varies across applications. With success stories shared from different areas, this session provides an exciting opportunity for practitioners to gain broad and deep insights about the landscape of diagnostics and prognostics and inspire them to leverage the success from other areas.

This tutorial session will provide the state-of-art methods involving diagnostics and prognostics especially in batteries, energy, and chemical industry. Perspectives of challenges and future development of diagnostics and prognostics, from both academia and industry, will be covered as well.

ThB08 - Process Control Evolution and Challenges in Nuclear Power Plants

Organizer: Kevin Yu, Ontario Power Generation

Time/Location: 13:30 – 15:00, Thursday, July 11, 2024, Bay

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors/Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-14:15</td>
<td>Process Control Evolution and Challenges in Nuclear Power Plants</td>
<td>Kevin Yu, Mark Knutson</td>
</tr>
<tr>
<td>ThB08.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:15-15:00</td>
<td>Load-Following Control of Nuclear Power Plants in the Age of Small Modular Reactors</td>
<td>Zhibo Zhang, Jin Jiang</td>
</tr>
<tr>
<td>ThB08.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This tutorial paper is to present the evolution of the methodology that has guided performance optimization and the design techniques that ensure the robustness of control systems in the nuclear power plants at Ontario Power Generation Inc. The evolution is a true implementation of the design principles that have been pioneered by Canadian nuclear professionals over the past half century and reflects continuous learning, one of the core values in our safety culture, so that we can perform tasks with rigor and certainty. The paper will discuss failure mode and effects analysis by sharing some lessons we learned from our digitalization of some components and equipment. Human factors engineering is a design technique we use to reduce human errors when operators are part of process control loops. While this paper will focus on plant process control systems, our two sister papers will be dedicated to turbine governor control and the coordination between the energy generated from nuclear power plants and the demand from the electrical grid in the context of the Small Modular Reactor.
Workshops

The ACC will offer workshops addressing current and future topics in automatic control from experts in academia, national laboratories, and industry. The workshops at ACC 2024 will take place prior to the conference on July 8 and 9, with lengths varying from full workshops to half-day workshops.

Monday Workshops

W13: Computation for Real World Control Systems

Organizer: Daniel Abramovitch
Time: Monday Afternoon, July 8, 2024
Location: Dockside 3

Computation is an essential component of implementing any real-world control system, but the details of how to make this work are often either left to the individual contributors to figure out or handed off to turn-key vendors. This workshop intends to provide insights, methods, and concrete examples into three major pieces of this subject. First, the workshop will present recent tutorial material (ACC 2023) from the author on real-time computing issues for control systems. This material explains the principal factors affecting the four computing chains inside a feedback system. After this overview, the workshop will spend time on an often-neglected area of computation for control system measurements, whether they be used in the control loop operation or in the system identification used in model building for control. Finally, the workshop will hone in on specific programming methods and components in the controller itself, describing efficient implementation methods and structures. Together these three thrusts should equip the participant with tools that they can apply almost immediately in their work. While the technology of computation constantly changes, the principles that lead any one of those signal chains to be a limiting factor remain the same.
TUESDAY WORKSHOPS

W01: Model-Based Process Control Using First-Principles Models

Organizer: R. Russell Rhinehart
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Location: Pier 8

This full-day workshop has two objectives: 1) For those in research related to control methods the workshop will reveal successful techniques and issues that need to be incorporated in model-based controllers. 2) For those considering implementing first-principles models for control, it will be a practical how-to guide.

W02: Data-Based: the Past and Future of Control?

Organizers: Raman Goyal and Suman Chakravorty
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Pier 3

Data-based control has a long history in the Control community, tracing back to seminal work in adaptive control and system identification. However, much of this past work concentrated, for good reason, on linear time-invariant (LTI) problems. With the rapid advances of Reinforcement Learning (RL) in the past decade, owing partly to the vast increase in computing power, data-based control is enjoying a renaissance and seems poised to advance control synthesis to a slew of new applications that are non-LTI.

W03: Optimal Control in Julia with JuMP and InfiniteOpt

Organizer: Joshua Pulsipher
Time: 8:30 – 17:30, Tuesday, July 9, 2024 One full day
Room: Dockside 9

This workshop is a tutorial on how to model complex nonlinear, continuous-time optimal control problems via InfiniteOpt.jl and JuMP.jl. Leveraging a unifying abstraction for infinite-dimensional optimization (InfiniteOpt) problems, InfiniteOpt.jl is a Julia-based open-source software package that builds upon JuMP.jl to provide an intuitive symbolic modeling environment for many problem classes in dynamic, PDE-constrained, and stochastic optimization. Moreover, its extensibility allows researchers to make their cutting-edge techniques accessible to a wide audience of individuals. All these aspects make InfiniteOpt.jl a powerful tool for tackling advanced optimal control problems.

CANCELLED
W04: Coupled Transportation and Power Networks: New Challenges and Opportunities for Systems, Control, and Learning

Organizers: Junjie Qin and Sivaranjani Seetharaman
Time: Tuesday, July 9, 2024, Half day - afternoon
Room: Dockside 5

As the electrification of transportation becomes a crucial component of sustainable mobility in the future, cities across the globe have set ambitious goals to promote the use of electric vehicles. The increasing penetration of electric vehicles (EVs) altered not only the travel patterns of private car users and fleet operators over the transportation network, but also the power consumption patterns over the distribution power networks, resulting in a tighter coupling between the transportation and power systems.

W05: Physics-informed Machine Learning for Modeling, Control, and Optimization

Organizers: Thomas Beckers, Jan Drgona, Madelyn Shapiro, Draguna Vrabie, Rolf Findeisen, Sandra Hirche
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Pier 5

In recent years, there has been an explosion of research on the intersection of machine learning and classical engineering domains. Machine learning is increasingly being used in the development of novel data-driven approaches for modeling and control of dynamical systems, traditionally dominated by physics-based models and scientific computing solvers. On the other hand, engineering and scientific computing principles are changing the machine learning landscape from purely black-box into domain-aware methods by incorporating more structure and prior knowledge into their model architectures and loss functions.
W06: Advanced Battery Management: Recent Advances and Future Trends

Organizers: Huazhen Fang, Xinfan Lin, Scott Moura, Simona Onori, Ziyou Song

Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Dockside 9

Battery energy storage systems are emerging as the backbone of numerous industrial and civilian applications, serving as pivotal components in transitioning the world toward a clean energy era. Their performance and safety critically rely on advanced battery management techniques, which have garnered significant attention from the research community, particularly in the systems and control domain, over the past decade. These concerted efforts have resulted in remarkable progress, harnessing control theory to enable sophisticated, high-performing battery systems across a wide array of applications.

W07: Advances in Cybermedical Systems: Recent Results on the Modeling and Control of Biological Systems for Medical Applications

Organizers: Amor Menezes and Ali Mesbah

Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Pier 2

Foundational 21st-century control theory advances have helped realize practical cyberphysical systems, captured biological system dynamics both mechanistically and phenomenologically, and developed biosystem regulation at multiple interaction scales, from molecules to organisms. At the intersection of these advances lies the field of cybermedical systems. Cybermedical systems are physical or biological constructs that incorporate automated monitoring, manipulation, and testing of biological systems with programmed knowledge and artificial Intelligence, to achieve a goal of improved human health.
W08: Practical Methods for Real World Control Systems

Organizers: Daniel Abramovitch, Sean Andersson, Craig Buhr
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Dockside 1

A question one should ask of any advanced algorithm is, “How do we make that work in a real system?” A question one should ask of any industrial control system is, “How do we apply better algorithms to this problem?” The two questions are dual sides of the same “bridging the gap” problem that has hounded control for decades. This workshop will examine practical methods that address this problem from both sides: ways to implement advanced algorithms on real systems and ways to improve industrial control using advanced methods.

W09: A Systems Perspective on Automotive Cybersecurity

Organizers: Mohammad Pirani, Walter Lucia, Ehsan Nekouei, Bruno Sinopoli, Karl Henrik Johansson
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Dockside 4

Advancements in embedded systems, sensor technologies, communication devices, and artificial intelligence have resulted in vehicles that are pervasively monitored by dozens of digital computing units coordinated via internal vehicular communication networks. While this evolution in vehicle connectivity has propelled major advancements in driving efficiency, it has also introduced a new range of potential risks, including the unwanted access of third parties with malicious motives which can endanger driving safety. For instance, it has been experimentally demonstrated that bypassing the security mechanisms of a vehicle is not difficult for attackers. Moreover, attackers can also completely erase any evidence of their presence.
W10: Confluence of Learning and Control Approaches in Multi-Agent Systems

Organizers: Aditya Dave, Logan E. Beaver, Heeseung Bang, Andreas A. Malikopoulos
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Pier 9

As the world grows increasingly well connected, multi-agent systems have encompassed many critical applications such as cooperative robots, networked control systems, power systems, autonomous vehicles, mobility markets, smart cities, economic institutions, and online social networks. Typically, a multi-agent system comprises many decision-makers that must either learn to act or compute coordinated actions to achieve the design objective. A key feature of such systems is the need for decentralized decision-making arising from different factors such as restricted communication, computational limits, and requirements of resilience against the failure of any subgroup of agents. Under these conditions, traditional centralized approaches for both optimal control and reinforcement learning are rendered unsuitable. Thus, studying the confluence of the different approaches to learning and control in multi-agent systems has emerged as a crucial area of research and development.

W11: Challenges in Control for the Future of Mobility

Organizers: Gioele Zardini, Carlo Cenedese, Emilio Frazzoli, John Lygeros
Time: 8:30 – 17:30, Tuesday, July 9, 2024, One full day
Room: Dockside 6

Increasing urbanization and exacerbation of sustainability goals threaten the operational efficiency of current transportation systems and confront cities with complex choices with huge impacts on future generations. At the same time, the rise of private, profit-maximizing Mobility Service Providers leveraging public resources, such as ride-hailing companies, entangles current regulation schemes. This calls for tools to study such complex socio-technical problems. In past years, optimization and control played an important role when solving decision-making problems in this space.
W12: Cooperative Output Regulation of Heterogeneous Multi-agent Systems

Organizers: Jie Huang, Changran He, Yamin Yan, Selahattin Burak Sarsilmaz, Ahmet Taha Koru

Time: Half day – afternoon, Tuesday, July 9, 2024
Room: Pier 7

In cooperative control of multi-agent systems, one of the fundamental problems is to design a distributed control law such that the output of every agent asymptotically tracks a class of references and asymptotically rejects a class of disturbances while preserving the closed-loop stability. The term ‘cooperative output regulation’ was coined in the 2010s to refer to this problem. It offers a unifying framework that considers heterogeneity in multi-agent systems, paves the way for a capability of tracking and rejecting a large class of signals, and contains typical cooperative control problems such as leader-following and formation as subcases. The main difficulty here lies in the lack of central authority. In other words, each agent can share information with only their neighbors. From a control theory viewpoint, how should distributed controllers (i.e., local interactions between the agents and control protocols) be structured to ensure that the cooperative output regulation is undertaken?

Bystander Intervention Workshop (Free Registration)

Organizers: Kelley Barsanti, Jay Farrell, Blair Schneider

Time: 9:00 – 12:00 and 14:00 – 17:00 (offered twice), Tuesday, July 9, 2024
Room: Dockside 3

The purpose of this interactive workshop is to build awareness and understanding of exclusionary behaviors and to teach and practice effective bystander intervention in engineering academic and professional settings, as pathways to building culture and climate that promote equity and inclusion. The workshop includes an interactive PowerPoint presentation and breakout groups in which you will discuss and practice bystander intervention approaches in scenarios focused on common academic environments (e.g., faculty meetings and conferences) that are based on actual events. The skills developed in this workshop have usefulness in all aspects of life and work, including faculty and student interactions.

NSF CEAN is a partnership between Bourns College of Engineering (UC Riverside), NSF ADVANCEGeo, and UC College of Engineering Deans Council.
Late-Breaking News Poster Session

Thursday, July 11, 11:00-11:45, Metro, Harbour and Frontenac Ballrooms

<table>
<thead>
<tr>
<th>Number</th>
<th>Poster title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThPo1.1</td>
<td>Intelligent System of the Grinding Robot for Spiral Welded Pipe</td>
<td>Ayalew, Getachew Demeissie</td>
</tr>
<tr>
<td>ThPo1.2</td>
<td>Advanced Bi-Layer Control System for Continuous Pharmaceutical Manufacturing Pilot-Plant</td>
<td>Singh, Ravendra</td>
</tr>
<tr>
<td>ThPo1.3</td>
<td>D-Stability for Discrete Time Closed-Loops Subject to Signal-To-Noise Ratio Constraints</td>
<td>Rojas, Alejandro J.; Barbosa, Karina A.</td>
</tr>
<tr>
<td>ThPo1.4</td>
<td>Sampling theorem for exact identification of continuous-time nonlinear systems based on the Koopman operator</td>
<td>Zeng, Zhexuan; Yue, Zuogong; Mauroy, Alexandre; Goncalves, Jorge; Yuan, Ye</td>
</tr>
<tr>
<td>ThPo1.5</td>
<td>Latest Results on 24/7 Implementation of Neural Network Based Signal Control for Nimitz Highway in Honolulu</td>
<td>Wang, Hong; Wang, Yiwei; Wang, Chieh (Ross); Shao, Yunli; Zhang, Guohui; Subramaniyan, Arun Bala</td>
</tr>
<tr>
<td>ThPo1.6</td>
<td>Data-Driven Controls of a Flapping Wing Unmanned Aerial Vehicle Inspired by Monarch Butterfly</td>
<td>K. C., Tejaswi; Lee, Taeyoung</td>
</tr>
<tr>
<td>ThPo1.7</td>
<td>A Simulation Preorder for Koopman-Like Lifted Control Systems</td>
<td>Aspeel, Antoine; Ozay, Necmiye</td>
</tr>
<tr>
<td>ThPo1.8</td>
<td>A Direct and Execution-Time-Certified Box-QP Algorithm for Input-Constrained MPC</td>
<td>Wu, Liang; Braatz, Richard D.</td>
</tr>
<tr>
<td>ThPo1.9</td>
<td>Improving Positioning Accuracy Using Particle Filter with Enhanced IMU Velocity Estimation</td>
<td>Pisarski, Dominik; Faraj, Rami; Jankowski, Łukasz; Konowrocki, Robert; Poplawski, Blazej</td>
</tr>
<tr>
<td>ThPo1.10</td>
<td>A Ball Launching Mechanism for Real-Time Control Education</td>
<td>Moallem, Mehrdad; Mohagheghi, Afagh</td>
</tr>
<tr>
<td>ThPo1.11</td>
<td>Deep Monocular Relative 6D Pose Estimation for Ship-Based Autonomous UAV</td>
<td>Wickramasuriya, Maneesha; Lee, Taeyoung; Snyder, Murray</td>
</tr>
<tr>
<td>Number</td>
<td>Poster title</td>
<td>Authors</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>ThPo1.12</td>
<td>Uniform Exponential Stability in Finite-Difference Model Reduction for Magnetizable Piezoelectric Beams with Non-Collocated Observers</td>
<td>Rasaq, Uthman; Khalilullah, Sk Md Ibrahim; Walterman, Jacob; Ozer, Ahmet Ozkan</td>
</tr>
<tr>
<td>ThPo1.13</td>
<td>FPGA-Accelerated Particle Filter for High-Speed Target Localization in Edge Computing Devices</td>
<td>Kim, Daeyeon; Kim, Nayeon; Lee, Heoncheol; Choi, Wonseok; Jeong, Bora; Cho, Youngki</td>
</tr>
<tr>
<td>ThPo1.14</td>
<td>Reinforcement Learning Enables Extreme Vehicle Lateral Maneuvers</td>
<td>Yechiel, Oded; Suplin, Vladimir</td>
</tr>
<tr>
<td>ThPo1.15</td>
<td>Unlocking Floating Offshore Wind Potential: Layout Modification for Power Maximization</td>
<td>Niu, Yue; Nagamune, Ryozo</td>
</tr>
<tr>
<td>ThPo1.16</td>
<td>Enhancing Nonlinear Chemical Process Monitoring with Neural Component Analysis Based Singular Spectrum Analysis (SSA-NCA)</td>
<td>Ndunda, Enock; Krishnannair, Syamala</td>
</tr>
<tr>
<td>ThPo1.17</td>
<td>A Superstructure Design for Sustainable Hydrogen Byproduct Production and CO2 Emission Mitigation</td>
<td>Khaligh, Vahid; Ghezelbash, Azam; Niaz, Haider; Liu, Jay</td>
</tr>
<tr>
<td>ThPo1.18</td>
<td>Dynamic Extended-Output Observer Design for an Adaptive Vertical Farm Quadcopter</td>
<td>Chnib, Echrak; Bagnerini, Patrizia; Gaggero, Mauro; Zemouche, Ali</td>
</tr>
<tr>
<td>ThPo1.19</td>
<td>Deep Reinforcement Learning Based Tracking Control of van de Vusse Reactor</td>
<td>Ankalugari, Rahul Yadav; M U, Abuthahir; Magbool Jan, Nabil; Joseph, Ajin George</td>
</tr>
<tr>
<td>ThPo1.20</td>
<td>Temperature Estimation in Lithium-Ion Batteries through Cascaded Electrochemical-Thermal Models</td>
<td>Ferreira, Patryck; Tang, Shuxia</td>
</tr>
<tr>
<td>ThPo1.21</td>
<td>TUM CONTROL: Open Source Controller-Vehicle in Loop Simulation Framework for ultra-Rapid prototyping in Python</td>
<td>Zarrouki, Baha; Betz, Johannes</td>
</tr>
<tr>
<td>Number</td>
<td>Poster title</td>
<td>Authors</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ThPo1.22</td>
<td>Deep Reinforcement Learning Driven Adaptive Stochastic NMPC Reduces Conservatism, Enhances Feasibility and Improves Closed-Loop Performance</td>
<td>Zarrouki, Baha; Wang, Chenyang; Betz, Johannes</td>
</tr>
<tr>
<td>ThPo1.23</td>
<td>Safe Deep Reinforcement Learning (RL) Agent Adapts the Cost Function Weights of a Weights-Varying MPC (WMPC)</td>
<td>Zarrouki, Baha; Spanakakis, Marios; Betz, Johannes</td>
</tr>
<tr>
<td>ThPo1.24</td>
<td>Noncontact Magnetic Manipulation Using Permanent Magnets</td>
<td>Ekanayake, Lahiru; Weerasekara Mudiyanselage, Janaka Madhusankha; Basnet, Dhiraj; Komae, Arash</td>
</tr>
<tr>
<td>ThPo1.25</td>
<td>Algebraic Prescribed-Time KKL Observer for Autonomous Nonlinear Systems</td>
<td>Marani, Yasmine; N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem</td>
</tr>
<tr>
<td>ThPo1.26</td>
<td>Uncertainty Quantification in Physiological Modeling Using Bayesian Variational Autoencoders</td>
<td>Estiri, Elham; Mirinejad, Hossein</td>
</tr>
<tr>
<td>ThPo1.27</td>
<td>Reinforcement Learning and Nonlinear Integrated Controller for Guaranteed Local Stability</td>
<td>Nan, Shiqi; Chen, Chih-Chiang; Qian, Chunjiang</td>
</tr>
<tr>
<td>ThPo1.28</td>
<td>Benchmarking Surrogate Embedding Strategies for Model Predictive Control</td>
<td>Elorza Casas, Carlos Andres; Pulsipher, Joshua; Ricardez-Sandoval, Luis</td>
</tr>
<tr>
<td>ThPo1.29</td>
<td>Properties of Immersions for Systems with Multiple Limit Sets with Implications to Learning Koopman Embeddings</td>
<td>Liu, Zexiang; Ozay, Necmiye; Sontag, Eduardo</td>
</tr>
<tr>
<td>ThPo1.30</td>
<td>Particle Swarm Optimization for Training Quadrotor PID Controller</td>
<td>Rodriguez, Eric; Dong, Wenjie; Lu, Qi</td>
</tr>
<tr>
<td>ThPo1.31</td>
<td>On Control-Sync Technique for Multi-Task System Operation</td>
<td>Fateh, Fariba; Mirafzal, Behrooz</td>
</tr>
<tr>
<td>ThPo1.32</td>
<td>Staggered Steering of Wheeled-Legged Biped Robot</td>
<td>Montufar, Sergio; Qian, William</td>
</tr>
<tr>
<td>Number</td>
<td>Poster title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ThPo1.33</td>
<td>Information-Based Anomaly Detection for Autonomous Agents</td>
<td>McKee, Sasha M; Haddadin, Osama; Leang, Kam K.</td>
</tr>
<tr>
<td>ThPo1.34</td>
<td>Estimating the Lateral Stability Region of the Vehicle Using the Koopman Spectrum</td>
<td>Kumar, Alok; Umathe, Bhagyashree; Vaidya, Umesh; Kelkar, Atul</td>
</tr>
<tr>
<td>ThPo1.35</td>
<td>Self Organized Neural Network for Swarm Robots</td>
<td>Han, Zhifeng; Walton, Claire</td>
</tr>
<tr>
<td>ThPo1.36</td>
<td>Deep Neural Network In-Proximity Effect Detection and Collision Avoidance for Aerial Vehicles</td>
<td>M Anderson, Jacob; Leang, Kam K.</td>
</tr>
<tr>
<td>ThPo1.37</td>
<td>Distribution-Matching Deployment: A Stein Variational Gradient Approach to Optimal Multisensor Placement</td>
<td>Ghimire, Donipolo; Kia, Solmaz S.</td>
</tr>
<tr>
<td>ThPo1.38</td>
<td>Real Application of Deep Reinforcement Learning for multi-agent Cooperation in Distributed Model-Based Predictive Control.</td>
<td>Aponte Rengifo, Oscar Emilio; Francisco, Mario; Vega Cruz, Pastora</td>
</tr>
<tr>
<td>ThPo1.39</td>
<td>Improving Drone Control: Achieving Strong Stability and Adaptability Using Online Reinforcement Learning</td>
<td>Avila, Ethan; Jaber, Halah; Frye, Michael</td>
</tr>
<tr>
<td>ThPo1.40</td>
<td>Parameter Design of P-PI Controller for Motion Control Systems Using Limited Pole Placement Method</td>
<td>Urakawa, Yoshiyuki; Ngamlamai, Sirichai</td>
</tr>
<tr>
<td>ThPo1.41</td>
<td>Cyber-Attack Detection by Using a Discrete-Time Model-Based Unknown Input Observer</td>
<td>Nguyen, Quang Huy; Sadki, Osama; Rafaralahy, Hugues; Haddad, Madjid; Zemouche, Ali</td>
</tr>
<tr>
<td>ThPo1.42</td>
<td>Closed-Loop Battery Manufacturing Process Control via End-of-Line Formation Features</td>
<td>Weng, Andrew; Less, Greg; Siegel, Jason B.; Stefanopoulou, Anna G.</td>
</tr>
<tr>
<td>ThPo1.43</td>
<td>Integrating Dynamic Risk Assessment with Model Predictive Control for Enhanced Safety and Operational Efficiency</td>
<td>Akundi, Sahithi Srijana; Liu, Yuanxing; Braniff, Austin; Dantas, Beatriz; Niknezhad, Shayan Sean; Tian, Yuhe; Khan, Faisal; Pistikopoulos, Efstratios N.</td>
</tr>
</tbody>
</table>
DAILY OVERVIEW OF EVENTS/ACTIVITIES

MONDAY OVERVIEW

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afternoon</td>
<td>Workshop 13. Please see the Workshops section for more information on the Monday workshops.</td>
</tr>
</tbody>
</table>

TUESDAY OVERVIEW

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 – 17:30</td>
<td>Workshops 1-3, 5-11, and AACC Bystander Training Workshop. Please see the Workshops section for more information on the Tuesday full-day workshops.</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Workshop 4 and 12. Please see the Workshops section for more information on the Tuesday half-day workshops.</td>
</tr>
<tr>
<td>18:30 – 20:30</td>
<td>Opening Reception, Harbour Ballroom</td>
</tr>
</tbody>
</table>

WEDNESDAY OVERVIEW

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30 – 08:30</td>
<td>Special Session: Early Career Welcome Breakfast (Pier 2)</td>
</tr>
<tr>
<td>08:15 – 08:30</td>
<td>2024 ACC Opening Remarks (Metro E/C)</td>
</tr>
<tr>
<td>08:30 – 09:30</td>
<td>Plenary Session (see Plenary Sessions, Metro E/C) “Control of Uncrewed Vehicle Systems – from Unconventional Flyers to Maritime Autonomy”, Kingsley Fregene, Lockheed Martin, USA</td>
</tr>
<tr>
<td>09:30 – 10:00</td>
<td>Coffee Break (Dockside Foyer, Pier/ Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>10:00 – 11:45</td>
<td>Morning Rapid Interactive (RI) Technical Sessions</td>
</tr>
<tr>
<td>10:00 – 11:30</td>
<td>Special Session: Family-friendly session – STEM-themed animated shorts and games (Dockside 1)</td>
</tr>
<tr>
<td>11:00 – 13:30</td>
<td>Special Sessions (see Special Sessions and Student Programs)</td>
</tr>
<tr>
<td></td>
<td>● National Science Foundation: An Overview of NSF Programs (11:00 am – 12:30 pm, Pier 2)</td>
</tr>
<tr>
<td></td>
<td>● Elsevier: How to get published- first steps in getting your work published in journals (11:30 – 12:30, Queens Quay 1)</td>
</tr>
</tbody>
</table>
Daily Overview

- Tracking Control Problems with Open-Source Software in Julia and Python (11:30 – 13:00, Bay)
- Social Justice and Control Theory -- Bridging engineering and equity (11:30 – 12:30, Dockside 2)
- IEEE CSS Women in Control Luncheon (12:00 – 13:30, Pier 4 and 5)

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30 – 15:00</td>
<td>Mid-Day Technical Sessions</td>
</tr>
<tr>
<td>15:00 – 15:30</td>
<td>Coffee Break (Dockside Foyer, Pier/Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>15:30 – 17:00</td>
<td>Late Afternoon Technical Sessions</td>
</tr>
<tr>
<td>15:30 – 17:00</td>
<td>Student Best Paper Award Session (Pier 9) – Please see Student Programs section for details</td>
</tr>
<tr>
<td>17:30 – 19:30</td>
<td>Special Session: Student networking event at ACC 2024 (17:30 – 19:30, Metro W)</td>
</tr>
</tbody>
</table>

THURSDAY OVERVIEW

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30 – 08:30</td>
<td>Special Session: Student Breakfast (Part I) – Security and Privacy of the Next-Generation Cyber-Physical Systems (Dockside 1)</td>
</tr>
<tr>
<td>08:30 – 09:30</td>
<td>Plenary Session (see Plenary Sessions, Metro E/C)</td>
</tr>
<tr>
<td></td>
<td>“A Control Systems Approach to Cell Fate Reprogramming”, Domitilla Del Vecchio, Massachusetts Institute of Technology, USA.</td>
</tr>
<tr>
<td>09:30 – 10:00</td>
<td>Coffee Break (Dockside Foyer, Pier/Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>10:00 – 11:00</td>
<td>Eckman Plenary Lecture (see Plenary Sessions, Metro E/C)</td>
</tr>
<tr>
<td></td>
<td>“Hybrid Dynamical Seeking Systems: Model-Free Feedback Decision-Making and Control”, Jorge I. Poveda, University of California, San Diego, USA</td>
</tr>
<tr>
<td>11:00 – 11:45</td>
<td>Late-breaking News Poster Session (Metro, Harbour, and Frontenac Ballrooms)</td>
</tr>
<tr>
<td>11:45 – 12:45</td>
<td>Awards Ceremony (Frontenac Ballroom)</td>
</tr>
<tr>
<td>Time</td>
<td>Events</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>11:30 – 13:15</td>
<td>Special Sessions (see Special Sessions and Student Programs)</td>
</tr>
<tr>
<td></td>
<td>● Industry Lunch: MERL: Fundamental Research with Real-World Impact (12:00 – 13:15, Pier 2)</td>
</tr>
<tr>
<td></td>
<td>● Fostering JEDI in the Controls Community (11:30 – 12:30, Queens Quay 1)</td>
</tr>
<tr>
<td></td>
<td>● Industry session session: The Boeing Company (12:00 – 13:15, Queens Quay 2)</td>
</tr>
<tr>
<td></td>
<td>● Getting funded by NSF: Proposal preparation and the merit review process (11:30 – 13:15, Bay)</td>
</tr>
<tr>
<td></td>
<td>● How to make a STEM outreach film (11:30 – 12:30, Dockside 1)</td>
</tr>
<tr>
<td>13:30 – 15:00</td>
<td>Mid-Day Technical Sessions</td>
</tr>
<tr>
<td>15:00 – 15:30</td>
<td>Coffee Break (Dockside Foyer, Pier/Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>15:30 – 17:00</td>
<td>Late Afternoon Technical Sessions</td>
</tr>
<tr>
<td>18:30 – 21:30</td>
<td>Conference banquet at the Royal Ontario Museum</td>
</tr>
</tbody>
</table>
FRIDAY OVERVIEW

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30 – 08:30</td>
<td>Special Session: Student Breakfast (Part II) – Security and Privacy of the Next-Generation Cyber-Physical Systems (Dockside 1)</td>
</tr>
<tr>
<td>08:30 – 09:30</td>
<td>Plenary Session (see Plenary Sessions, Metro E/C) “Automatic Control in the Era of Artificial Intelligence” Francesco Borrelli, University of California, Berkeley, USA</td>
</tr>
<tr>
<td>09:30 – 10:00</td>
<td>Coffee Break (Dockside Foyer, Pier/Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>10:00 – 11:45</td>
<td>Morning Rapid Interactive (RI) Technical Sessions</td>
</tr>
<tr>
<td>10:00 – 13:15</td>
<td>Special Sessions (see Special Sessions)</td>
</tr>
<tr>
<td></td>
<td>● Feedback screening of "Independence" (10:15 – 13:15, Dockside 1)</td>
</tr>
<tr>
<td></td>
<td>● Mathworks Lunch: Asynchronous Engineering Instruction and Increased Teaching Impact (12:00 – 13:15, Pier 2)</td>
</tr>
<tr>
<td></td>
<td>● Role of control on climate resilience (11:30 – 13:00, Queens Quay 1)</td>
</tr>
<tr>
<td></td>
<td>● Recent systems and control research in Canada (11:30 – 13:00, Queens Quay 2)</td>
</tr>
<tr>
<td></td>
<td>● Navigating the Landscape of Innovation: Insights from Industry and Consulting (11:30 – 12:30, Bay)</td>
</tr>
<tr>
<td>13:30 – 15:00</td>
<td>Mid-Day Technical Sessions</td>
</tr>
<tr>
<td>15:00 – 15:30</td>
<td>Coffee Break (Dockside Foyer, Pier/Harbour Foyer, and Frontenac Area)</td>
</tr>
<tr>
<td>15:30 – 17:00</td>
<td>Late Afternoon Technical Sessions</td>
</tr>
<tr>
<td>18:30 – 20:30</td>
<td>Closing Reception (Harbour Ballroom area)</td>
</tr>
</tbody>
</table>
2024 American Control Conference

TECHNICAL PROGRAM

Program at a Glance
<table>
<thead>
<tr>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
<th>Track 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-11:03</td>
<td>10:00-11:03</td>
<td>10:00-11:03</td>
<td>10:00-11:03</td>
</tr>
<tr>
<td>Metro E/C</td>
<td>Metro E/C</td>
<td>Metro W</td>
<td>Metro W</td>
</tr>
<tr>
<td>Dockside 3</td>
<td>Dockside 3</td>
<td>Yonge</td>
<td>Pier 3</td>
</tr>
<tr>
<td>Control and Operations</td>
<td>Control and Operations</td>
<td>Linear Systems</td>
<td>Linear Systems</td>
</tr>
<tr>
<td>11:00-12:00</td>
<td>11:00-12:00</td>
<td>11:00-12:00</td>
<td>11:00-12:00</td>
</tr>
<tr>
<td>Metro E/C</td>
<td>Metro E/C</td>
<td>Metro W</td>
<td>Metro W</td>
</tr>
<tr>
<td>Track 5</td>
<td>Track 6</td>
<td>Track 7</td>
<td>Track 8</td>
</tr>
<tr>
<td>Well 03</td>
<td>Well 06</td>
<td>Well 11</td>
<td>Well 16</td>
</tr>
<tr>
<td>Track 9</td>
<td>Track 10</td>
<td>Track 11</td>
<td>Track 12</td>
</tr>
<tr>
<td>13:30-14:30</td>
<td>13:30-14:30</td>
<td>13:30-14:30</td>
<td>13:30-14:30</td>
</tr>
<tr>
<td>Pier 2</td>
<td>Pier 5</td>
<td>Pier 7</td>
<td>Pier 10</td>
</tr>
<tr>
<td>Track 13</td>
<td>Track 14</td>
<td>Track 15</td>
<td>Track 16</td>
</tr>
<tr>
<td>14:30-15:30</td>
<td>14:30-15:30</td>
<td>14:30-15:30</td>
<td>14:30-15:30</td>
</tr>
<tr>
<td>Pier 2</td>
<td>Pier 5</td>
<td>Pier 7</td>
<td>Pier 10</td>
</tr>
<tr>
<td>Track 17</td>
<td>Track 18</td>
<td>Track 19</td>
<td>Track 20</td>
</tr>
<tr>
<td>15:30-16:30</td>
<td>15:30-16:30</td>
<td>15:30-16:30</td>
<td>15:30-16:30</td>
</tr>
<tr>
<td>Pier 2</td>
<td>Pier 5</td>
<td>Pier 7</td>
<td>Pier 10</td>
</tr>
<tr>
<td>Track 21</td>
<td>Track 22</td>
<td>Track 23</td>
<td>Track 24</td>
</tr>
<tr>
<td>16:30-17:30</td>
<td>16:30-17:30</td>
<td>16:30-17:30</td>
<td>16:30-17:30</td>
</tr>
<tr>
<td>Pier 2</td>
<td>Pier 5</td>
<td>Pier 7</td>
<td>Pier 10</td>
</tr>
<tr>
<td>Track 25</td>
<td>Track 26</td>
<td>Track 27</td>
<td>Track 28</td>
</tr>
<tr>
<td>17:30-18:30</td>
<td>17:30-18:30</td>
<td>17:30-18:30</td>
<td>17:30-18:30</td>
</tr>
<tr>
<td>Pier 2</td>
<td>Pier 5</td>
<td>Pier 7</td>
<td>Pier 10</td>
</tr>
</tbody>
</table>
ACC 2024 Technical Program Thursday July 11, 2024

10:00-11:00 TH1
Eckman Plenary Lecture

- Hybrid Dynamical Seeking Systems: Model-Free Feedback Decision-Making and Control

11:00-11:45 THPr1
Late Breaking Poster Session

- Metro, Harbour, Frontenac Ballrooms

<table>
<thead>
<tr>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
<th>Track 4</th>
<th>Track 5</th>
<th>Track 6</th>
<th>Track 7</th>
<th>Track 8</th>
<th>Track 9</th>
<th>Track 10</th>
<th>Track 11</th>
<th>Track 12</th>
<th>Track 13</th>
<th>Track 14</th>
<th>Track 15</th>
<th>Track 16</th>
<th>Track 17</th>
<th>Track 18</th>
<th>Track 19</th>
<th>Track 20</th>
<th>Track 21</th>
</tr>
</thead>
</table>

15:30-17:00 TH201
Metro E/C Agents-Based Systems I

- 15:30-17:00 Metro E/C Agents-Based Systems II

17:00-19:00 TH202
Metro E/C Agents-Based Systems III

- 17:00-19:00 Metro E/C Agents-Based Systems IV

19:00-21:00 TH203
Metro E/C Agents-Based Systems V

- 19:00-21:00 Metro E/C Agents-Based Systems VI

21:00-23:00 TH204
Metro E/C Agents-Based Systems VII

- 21:00-23:00 Metro E/C Agents-Based Systems VIII
2024 American Control Conference

TECHNICAL PROGRAM

Detailed Program Listing
Technical Program for Wednesday July 10, 2024

WeP1 Metro E/C
Control of Uncrewed Vehicle Systems – from Unconventional Flyers to Maritime Autonomy (Plenary Session)

Chair: Grover, Martha
Georgia Institute of Technology
Co-Chair: Leang, Kam K.
University of Utah

08:30-09:30 WeP1.1
Fregene, Kingsley C.

WeA01 Metro E/C
RI: Machine Learning in Control (RI Session)

Chair: Shahbakhti, Mahdi
University of Alberta
Co-Chair: Yoon, Se Young (Pablo)
University of New Hampshire

10:00-10:03 WeA01.1
Bagheri, Amirsalar; Patrignani, Andres; Ghanbarian, Behzad; Babaei Pourkargar, Davood

10:03-10:06 WeA01.2
Transfer Learning for Dynamical Systems Models Via Autoencoders and GANs, pp. 8-14.
Damiani, Angelo; Viera López, Gustavo; Manganini, Giorgio; Metelli, Alberto; Maria; Restelli, Marcello

10:06-10:09 WeA01.3
Concurrent Learning and Lyapunov-Based Updates of Deep Neural Networks for Euler-Lagrange Dynamic Systems, pp. 15-20.
Basyal, Sujata; Ting, Jonathan; Mishra, Kislaya; Allen, Brendon C.

10:09-10:12 WeA01.4
Model Free Difference Feedback Control of
Zaheer, Muhammad Hamad; Yoon, Se Young (Pablo)

10:12-10:15 WeA01.5
Control-Based Graph Embeddings with Data Augmentation for Contrastive Learning, pp. 27-32.
Ahmad, Obaid Ullah; Said, Anwar; Shabbir, Mudassir; Koutsoukos, Xenofon; Abbas, Waseem

10:15-10:18 WeA01.6
Distributed Reinforcement Learning for Swarm Systems with Reward Machines, pp. 33-38.
Meshkat Alsadat, Shayan; Baharisinghari, Nasim; Paliwal, Yash; Xu, Zhe

10:18-10:21 WeA01.7
Integrating Machine Learning in Process Control with LSTMc: A Case Study in Batch Crystallization, pp. 39-44.
Sitapure, Niranjan; Kwon, Joseph

10:21-10:24 WeA01.8
Learning-Based Model Predictive Control of an Ammonia Synthesis Reactor, pp. 45-50.
Oliveira Cabral, Thiago; Bagheri, Amirsalar; Babaei Pourkargar, Davood

10:24-10:27 WeA01.9
Explainable Optimal Solutions Using Fuzzy Inference, pp. 51-55.
Deneke, Tewodros Lemma; Dunia, Ricardo; Baldea, Michael

10:27-10:30 WeA01.10
Solving Two-Player General-Sum Game between Swarms, pp. 56-61.
Ghimire, Mukesh; Zhang, Lei; Zhang, Wenlong; Ren, Yi; Xu, Zhe

10:30-10:33 WeA01.11
Sitapure, Niranjan; Kwon, Joseph

10:33-10:36 WeA01.12

Min-Max Optimization under Delays, pp. 80-85.

An Effective Hyperparameter Tuning Method for Ising Machines in Practical Use, pp. 98-103.

Data-Efficient Uncertainty-Guided Model-Based Reinforcement Learning with Unscented Kalman Bayesian Neural Networks, pp. 104-110.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:21-10:24</td>
<td>WeA02.8</td>
<td>A Mixing-Accelerated Primal-Dual Proximal Algorithm for Distributed Nonconvex Optimization, pp. 167-172.</td>
<td>Ou, Zichong; Qiu, Chenyang; Wang, Dandan; Lu, Jie</td>
</tr>
<tr>
<td>10:27-10:30</td>
<td>WeA02.10</td>
<td>An Auxiliary Graph for Clock Rigidity Analysis, pp. 180-185.</td>
<td>Wen, Ruixin; Schoof, Eric; Chapman, Airlie</td>
</tr>
<tr>
<td>10:30-10:33</td>
<td>WeA02.11</td>
<td>Distributed Least-Squares Optimization Solvers with Differential Privacy, pp. 186-191.</td>
<td>Liu, Weijia; Wang, Lei; Guo, Fanghong; Wu, Zheng-Guang; Su, Hongye</td>
</tr>
<tr>
<td>10:33-10:36</td>
<td>WeA02.12</td>
<td>Leveraging Untrustworthy Commands for Multi-Robot Coordination in Unpredictable Environments: A Bandit Submodular Maximization Approach, pp. 192-199.</td>
<td>Xu, Zirui; Lin, Xiaofeng; Tzoumas, Vasileios</td>
</tr>
<tr>
<td>10:36-10:39</td>
<td>WeA02.13</td>
<td>Controlled Sensing for Communication-Efficient Filtering and Smoothing in POMDPs, pp. 200-207.</td>
<td>Liu, Changrong; Molloy, Timothy L.; Nair, Girish N.</td>
</tr>
<tr>
<td>10:42-10:45</td>
<td>WeA02.15</td>
<td>Fairness-Aware Electric Taxi Fleet Coordination under Short-Term Power System Failures, pp. 214-219.</td>
<td>Yuan, Yukun; Ding, Zihan; Lin, Shan</td>
</tr>
<tr>
<td>10:45-10:48</td>
<td>WeA02.16</td>
<td>A Geometric Approach to Resilient Distributed Consensus Accounting for State Imprecision and Adversarial Agents, pp. 220-225.</td>
<td>Lee, Christopher; Abbas, Waseem</td>
</tr>
<tr>
<td>10:48-10:51</td>
<td>WeA02.17</td>
<td>Synchronize the Parachute and the Vessel: A Hierarchical Distributed Nonlinear Model Predictive Control Approach, pp. 226-232.</td>
<td>Wei, Zhenyu; Gao, Yan; Shao, Zhijiang</td>
</tr>
<tr>
<td>10:51-10:54</td>
<td>WeA02.18</td>
<td>Guarding a Target Area from a Heterogeneous Group of Cooperative Attackers, pp. 233-238.</td>
<td>Lee, Yoonjae; Das, Goutam; Shishika, Daigo; Bakolas, Efstathios</td>
</tr>
<tr>
<td>10:54-10:57</td>
<td>WeA02.19</td>
<td>Heterogeneous Multi-Agent Reinforcement Learning Based on Adaptive Curiosity for Traffic Signal Control, pp. 239-244.</td>
<td>Pan, Yue; Lei, Jinlong; Yi, Peng</td>
</tr>
</tbody>
</table>

WeA03 Frontenac RI: Autonomous Robots and Systems (RI Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:03</td>
<td>WeA03.1</td>
<td>On XYZ-Motion Planning Using a Full Car Model, pp. 245-250.</td>
<td>Chakraborty, Sayan; Jiang, Yu; Jiang, Zhong-Ping</td>
</tr>
<tr>
<td>10:03-10:06</td>
<td>WeA03.2</td>
<td>Temporally Robust Multi-Agent STL Motion Planning in Continuous Time, pp. 251-258.</td>
<td>Verhagen, Joris; Lindemann, Lars; Tumova, Jana</td>
</tr>
<tr>
<td>10:06-10:09</td>
<td>WeA03.3</td>
<td>Structure from WiFi (SW): RSSI-Based Geometric Mapping of Indoor Environments, pp. 259-264.</td>
<td>Kim, Junseo; Aghouru Zalat, Jill; Bahoo, Yeganeh; Saeedi, Sajad</td>
</tr>
<tr>
<td>10:09-10:12</td>
<td>WeA03.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tracking Control of Optical Beam Transceivers Using Mean Field Models, pp. 265-271.
N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem
10:12-10:15 WeA03.5
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters, pp. 272-278.
Brunke, Lukas; Zhou, Siqi; Che, Mingxuan; Schoellig, Angela P
10:15-10:18 WeA03.6
Chen, YuWen; Chiang, Ming-Li; Kuo, Guo-Rong; Chuang, Che-Jung; Fu, Li-Chen
10:18-10:21 WeA03.7
Li, Xiao; Liu, Kaiwen; Tseng, H. Eric; Girard, Anouck; Kolmanovsky, Ilya V.
10:21-10:24 WeA03.8
Chari, Anirudh; Chen, Rui; Grover, Jaskaran; Liu, Changliu
10:24-10:27 WeA03.9
Data-Driven Monitoring with Mobile Sensors and Charging Stations Using Multi-Arm Bandits and Coordinated Motion Planners, pp. 299-305.
Nayak, Siddharth; Greiff, Marcus Carl; Raghunathan, Arvind; Di Cairano, Stefano; P. Vinod, Abraham
10:27-10:30 WeA03.10
Poudel, Prakash; Cowlagi, Raghvendra V.
10:30-10:33 WeA03.11
Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments, pp. 312-317.
Long, Kehan; Tran, Khoa; Leok, Melvin; Atanasov, Nikolay
10:33-10:36 WeA03.12
P. Vinod, Abraham; Yamazaki, Sachio; Chakrabarty, Ankush; Yoshikawa, Nobuyuki; Di Cairano, Stefano
10:36-10:39 WeA03.13
Collision Cone Control Barrier Functions: Experimental Validation on UGVs for Kinematic Obstacle Avoidance, pp. 325-331.
Goswami, Bhavya Giri; Tatal, Manan; Rajgopal, Karthik; Jagtap, Pushpak; Nadubettu Yudukumar, Shishir
10:39-10:42 WeA03.14
Avoidance of Constant Velocity Targets Using Bearing and Time-To-Collision, pp. 332-337.
Adams, James J.; Liu, Jen Jui; Beard, Randal W.
10:42-10:45 WeA03.15
Achieving and Maintaining Inverted Pose for Miniature Autonomous Blimps, pp. 338-343.
Wang, Junkai; Zhang, Fumin
10:45-10:48 WeA03.16
Safe Control Synthesis for Hybrid Systems through Local Control Barrier Functions, pp. 344-351.
Yang, Shuo; Black, Mitchell; Fainekos, Georgios; Hoxha, Bardh; Okamoto, Hideki; Mangharam, Rahul
10:48-10:51 WeA03.17
Weaver, Catherine; Capobianco, Roberto; Wurman, Peter; Stone, Peter; Tomizuka, Masayoshi
10:51-10:54 WeA03.18
Karabag, Mustafa O.; Smith, Sophia; Fridovich-Keil, David; Topcu, Ufuk
10:54-10:57 WeA03.19
Where to Drop Sensors from Aerial Robots to Monitor a Surface-Level Phenomenon, pp. 367-374.

Shek, Chak Lam; Shi, Guangyao; Asghar, Ahmad Bilal; Tokekar, Pratap

Leveraging Computational Fluid Dynamics in UAV Motion Planning, pp. 375-381.

Huang, Yunshen; Greiff, Marcus Carl; P. Vinod, Abraham; Di Cairano, Stefano

Transformer Neural Networks with Spatiotemporal Attention for Predictive Control and Optimization of Industrial Processes, pp. 382-387.

Gallup, Ethan; Tuttle, Jacob; Immonen, Jake; Billings, Blake; Powell, Kody

A Transition System Abstraction Framework for Neural Network Dynamical System Models, pp. 388-393.

Yang, Yejiang; Mo, Zhaoh; Tran, Hoang-Dung; Xiang, Weiming

Lee, Jaemin; Kim, Jeeseop; Ames, Aaron D.

Burton, Samantha; He, Tianyi; Su, Weihua

Disturbance Propagation in Vehicle Platoons: Symmetric Bidirectional

Interconnections, pp. 408-413.

Farnam, Arash; Farsi, Milad; Ghorbani, Majid; L. Azad, Nasser; Crevecoeur, Guillaume

Zeiringer, Thomas; Seeber, Richard; Horn, Martin

Lin, Yun-Hao; Jafari, Alireza; Liu, Yen-Chen

Identification of Multirotor Actuator Dynamics with RPM Feedback for Improved Control, pp. 427-432.

Charla, Sesha; Yao, Bin; Voyles, Richard

Wang, Ruiyang; Wang, Siqing; Mei, Wenjun

Dimensionality Reduction of Dynamics on Lie Groups Via Structure-Aware Canonical Correlation Analysis, pp. 439-446.

Chung, Wooyoung; Polani, Daniel; Tiomkin, Stas

Moving past Point-Contacts: Extending the ALIP Model to Humanoids with Non-Trivial Feet Using Hierarchical, Full-Body Momentum Control, pp. 447-453.

Paredes, Victor; Hagen, Daniel; Chesebrough, Samuel; Swann, Riley; Garagic, Denis; Hereid, Ayonga

Ahmed, Nisar; Burks, Luke; Cabral, Kailah; Rose, Alyssa

Darir, Hussein; Dullerud, Geir E.; Borisov, Nikita

10:39-10:42 WeA04.14

Optimal State Estimation in the Presence of Non-Gaussian Uncertainty Via Wasserstein Distance Minimization, pp. 468-473.

Prabhat, Himanshu; Bhattacharya, Raktim

10:42-10:45 WeA04.15

Cui, Xiaofan; Khan, Muhammad AaDil; Singh, Surinder; Sharma, Ratnesh; Onori, Simona

10:45-10:48 WeA04.16

Simultaneous Parameter Estimation in Model-Free Control, pp. 480-485.

Waled, Danial; Duffaut Esponosa, Luis Augusto

10:48-10:51 WeA04.17

Deep Reinforcement Learning Based Distributed Active Joint Localization and Target Tracking, pp. 486-491.

Wang, Dongming; Su, Shaoshu; Ren, Wei; Hao, Ce

10:51-10:54 WeA04.18

Observable GNSS-IMU Sliding Window Filtering Using Differential Flatness, pp. 492-497.

Johnson, Jacob Collin; Beard, Randal W.

10:54-10:57 WeA04.19

Sloppiness of Structured Systems with a Matrix Fraction Description, pp. 498-503.

Ma, Yunxiang; Zhou, Tong

10:51-10:54 WeB01.1

Morrison, Zachary; Abudia, Moad; Rosenfeld, Joel A.; Kamalapurkar, Rushikesh

13:45-14:00 WeB01.2

Wahid, MD Ferdous; Tafreshi, Reza

14:00-14:15 WeB01.3

Operator-Based Detecting, Learning, and Stabilizing Unstable Periodic Orbits of Chaotic Attractors, pp. 516-521.

Tavasoli, Ali; Shakeri, Heman

14:15-14:30 WeB01.4

Counterfactually-Guided Causal Reinforcement Learning with Reward Machines, pp. 522-527.

Bahariscangari, Nasim; Paliwal, Yash; Xu, Zhe

14:30-14:45 WeB01.5

Tan, Wallace; Xiao, Ming; Wu, Guoquan; Wu, Zhe

14:45-15:00 WeB01.6

A Q-Learning Approach for Adherence-Aware Recommendations, pp. 536-541.

Faros, Ioannis; Dave, Aditya Deepak; Malikopoulos, Andreas A.

15:15-15:45 WeB01.7
Multi-Agent Target Position Estimation Using Bearing-Only Measurements Via Spatial Excitation, pp. 548-553.

Hyeon, Soojeong; Shames, Iman; Shim, Hyunbo

Strong Structural Controllability of Linear Descriptor Systems, pp. 554-559.

Mousavi, Shima Sadat; Bahrami, Somayyeh; Fekih, Afef

Cloud-Mediated Self-Triggered Synchronization of Physically Coupled Linear Agents, pp. 568-573.

Namba, Takumi; Takaba, Kiyotsugu

Ifqir, Sara; Ichalal, Dalil; Ait Oufroukh, Naima; Mammar, Said

Ifqir, Sara; Ichalal, Dalil; Ait Oufroukh, Naima; Mammar, Said

Closed-Form Information-Theoretic Roughness Measures for Mixture Densities, pp. 620-625.

Hanebeck, Uwe D.; Frisch, Daniel; Prossel, Dominik

Vakili, Sasan; Khosravi, Mohammad; Mohajerin Esfahani, Peyman; Mazo Jr.,
WeB04.4

MARG Sensor-Based Attitude Estimation on SO(3) under Unknown External Acceleration, pp. 632-637.
Shaaban, Ghadeer; Fourati, Hassen; Kibangou, Alain; Prieur, Christophe

WeB04.5

Verma, Ashwin; Mohajer, Soheil; Touri, Behrouz

WeB04.6

Mou, Tianhao; Liu, Jingfeng; Zou, Yuanyuan; Li, Shaoyuan; Xibilia, Maria Gabriella

WeB05

Optimization I (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>WeB05.1</td>
<td>Tradeoffs between Convergence Speed and Noise Amplification in First-Order Optimization: The Role of Averaging, pp. 650-655.</td>
<td>Samuelson, Samantha; Jovanovic, Mihailo R.</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>WeB05.2</td>
<td>Online Linear Quadratic Tracking with Regret Guarantees, pp. 656-661.</td>
<td>Karapetyan, Aren; Bolliger, Diego; Tsiamis, Anastasios; Balta, Efe C.; Lygeros, John</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB05.3</td>
<td>An Interconnected Systems Approach to Convergence Analysis of Discrete-Time Primal-Dual Algorithms, pp. 662-668.</td>
<td>Kelly, Spencer; Simpson-Porco, John W.</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>WeB05.4</td>
<td>On Distributed Nonconvex Optimisation Via Modified ADMM, pp. 669-674.</td>
<td>Mafakheri, Behnam; Manton, Jonathan H.; Shames, Iman</td>
</tr>
</tbody>
</table>

WeB05.5

Wang, Yijin; Ornik, Melkior; Dong, Roy

WeB05.6

Barreiro-Gomez, Julian; Poveda, Jorge I.

WeB06

Queens Quay 1

Control of Large-Scale Battery Energy Storage Systems (Invited Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>WeB06.1</td>
<td>Optimal Power Management of Battery</td>
<td></td>
</tr>
</tbody>
</table>
Farakhor, Amir; Askari, Iman; Wu, Di; Fang, Huazhen
13:45-14:00 WeB06.2

Optimal Charging with Active Thermal Management for eVTOL Aircraft Battery Packs (I), pp. 695-700.
Goshtasbi, Alireza; Han, Sangwoo; Zhao, Ruxiu; Neubauer, Jeremy
14:00-14:15 WeB06.3

Depreciation Cost Is a Poor Proxy for Revenue Lost to Aging in Grid Storage Optimization (I), pp. 701-706.
Kumtepeli, Volkan; Hesse, Holger; Morstyn, Thomas; Nosratabadi, Seyyed Mostafa; Aunedi, Marko; Howey, David A.
14:15-14:30 WeB06.4

Optimal Sizing, Operation, and Efficiency Evaluation of Battery Swapping Station for Electric Heavy-Duty Trucks (I), pp. 707-712.
Wang, Ruiting; Ju, Yi; Allybokus, Zaid; Zeng, Wente; Obrecht, Nicolas; Moura, Scott
14:30-14:45 WeB06.5

Comparison between Battery Cell Level Dynamics and Pack Level Dynamics Using Equivalent Circuit Models (I), pp. 713-718.
Ross, Joseph Peter; Frost, Damien Francis; Chatzinikolaou, Efstratios; Duncan, Stephen; Howey, David A.

WeB07
Queens Quay 2
Safety of Advanced Driver Assistance Systems and Automated Driving Systems (Invited Session)
Chair: Rastgoftar, Hossein University of Arizona
Co-Chair: Nazari, Junfeng Arizona State University
Organizer: Zhao, Ruxiu University of Arizona
Organizer: Askari, Iman UC Davis
13:30-13:45 WeB07.1

Alan, Anil; Ivanco, Andrej; Orosz, Gabor
13:45-14:00 WeB07.2

Safety-Guaranteed Learning-Based Flocking Control Design (I), pp. 725-730.
Liu, Mingzhe; Chen, Yan
14:00-14:15 WeB07.3

Adaptive Control of Vehicle Steering-By-Wire System with Varying-Degree Lyapunov Function and Deterministic Robust Control Augmentation (I), pp. 731-736.
Zhou, Xingyu; Ahn, Hyunjin; Kung, Yung-Chi; Shen, Heran; Wang, Junmin
14:15-14:30 WeB07.4

Sharma, Gaurav; Rajamani, Rajesh
14:30-14:45 WeB07.5

Safety-Critical Stabilization of Mixed Traffic by Pairs of CAVs (I), pp. 743-748.
Zhao, Chenguang; Molnar, Tamas G.; Yu, Huan

WeB08
Bay
Advanced Methods in Diagnostics and Prognostics (Tutorial Session)
Chair: Castillo, Ivan The Dow Chemical Company
Co-Chair: Wang, Zhenyu Dow Chemical
Organizer: Castillo, Ivan The Dow Chemical Company
Organizer: Wang, Zhenyu Dow Chemical
Organizer: Makki, Imad Ford Motor Company
13:30-14:15 WeB08.1

Advanced Methods in Diagnostics and Prognostics (I), pp. 749-762.
Mohr, Fabian; Sun, Weike; Braatz, Richard D.
14:15-14:30 WeB08.2

Schaeffer, Joachim; Galuppini, Giacomo;
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30-14:45</td>
<td>WeB08.3</td>
<td>Prognostics for Chemical Processes (I)</td>
<td>Rhyu, Jinwook; Asinger, Patrick; Droop, Robin; Findeisen, Rolf; Braatz, Richard D.</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>WeB08.4</td>
<td>Predictive Analytics for Chemical Processes (I)</td>
<td>Castillo, Ivan; Wang, Zhenyu; Chiang, Leo</td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>WeB09.1</td>
<td>A Comparative Study of Machine Learning Techniques for Aircraft Loss of Control Prediction</td>
<td>Khatri, Amit; Subbarao, Kamesh</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>WeB09.2</td>
<td>Optimal Impact Angle Guidance Via First-Order Optimization under Nonconvex Constraints</td>
<td>Park, Gyubin; Choi, Jiwoo; Jeong, Da Hoon; Kim, Jong-Han</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB09.3</td>
<td>Trajectory Tracking for Aerobatics Maneuvers in Quadrotors Vehicles</td>
<td>Ibarra, Efrain; Castillo, Pedro</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>WeB09.4</td>
<td>Capturing a Non-Cooperative Resident Space Object: A Control Barrier Function Approach</td>
<td>Edwards, Sage; Isaly, Axton; Brewer, John Matthew; Dixon, Warren E.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>WeB09.5</td>
<td>Spiral-Based Guidance Strategy for Interception of Stationary Targets</td>
<td>Mishra, Kushagra; Mukherjee, Dwaipayan; Kumar, Shashi Ranjan</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>WeB09.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>WeB10.1</td>
<td>Path Integral Control with Rollout Clustering and Dynamic Obstacles (I)</td>
<td>Patrick, Steven; Bakolas, Efstathios</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>WeB10.2</td>
<td>State-Constrained Adaptive Guidance for Three-Body Pursuit-Evasion Using Super Twisting Algorithm (I)</td>
<td>Gurjar, Bhagyashri; Kumar, Shashi Ranjan; Mukherjee, Dwaipayan</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB10.3</td>
<td>LQ-OCP: Energy-Optimal Control for LQ Problems (I)</td>
<td>Beaver, Logan E.</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>WeB10.4</td>
<td>Semi-Autonomous Full 3D Robot Operation with Variable Autonomy through Gaussian Process Regression (I)</td>
<td>Kitashiba, Atsushi; Oda, Ryo; Hatanaka, Takeshi</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>WeB10.5</td>
<td>Multi Agent Pathfinding for Noise Restricted Hybrid Fuel Unmanned Aerial Vehicles (I)</td>
<td>Scott, Drew; Manyam, Satyanarayana Gupta; Casbeer, David W.; Kumar, Manish; Weintraub, Isaac</td>
</tr>
</tbody>
</table>
Goutham, Mithun; Stockar, Stephanie

WeB11 Dockside 3

Game Theory I (Regular Session)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WeB11.1</td>
<td>Topology of Nash Equilibrium Set with Quadratic Vector Payoff Functions, pp. 845-850.</td>
<td>Guo, Zehui; Hayakawa, Tomohisa</td>
</tr>
<tr>
<td>WeB11.2</td>
<td>From Discrete to Continuous Best-Response Dynamics: Discrete Fluctuations Do Not Scale with Population Size, pp. 851-856.</td>
<td>Aghaeeyan, Azadeh; Ramazi, Pouria</td>
</tr>
<tr>
<td>WeB11.3</td>
<td>On the Intrinsic Fragility of the Price of Anarchy, pp. 857-862.</td>
<td>Seaton, Joshua; Brown, Philip N.</td>
</tr>
<tr>
<td>WeB11.4</td>
<td>A Robust Distributed Nash Equilibrium Seeking Algorithm for Aggregative Games under Byzantine Attacks, pp. 863-868.</td>
<td>Zhao, Jishu; Yi, Peng</td>
</tr>
<tr>
<td>WeB11.5</td>
<td>Large-Scale Multi-Agent System Optimization with Fixed Final Density Constraints: An Imbalanced Mean-Field Game Theory, pp. 869-874.</td>
<td>Dey, Shawon; Xu, Hao</td>
</tr>
<tr>
<td>WeB11.6</td>
<td>On the Optimal Cost and Asymptotic Stability in Two-Player Zero-Sum Set-Valued Hybrid Games, pp. 875-880.</td>
<td>J. Leudo, Santiago; Ferrante, Francesco; Sanfelice, Ricardo G.</td>
</tr>
</tbody>
</table>

WeB12 Dockside 9

Predictive Control for Nonlinear Systems I (Regular Session)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WeB12.1</td>
<td>Eco-Driving for Connected and Automated Vehicles in Mixed Traffic Urban Environments with Signalized Intersections, pp. 881-886.</td>
<td>Ebrahim, Alireza; Mosharafian, Sahand; Mohammadpour Velni, Javad</td>
</tr>
<tr>
<td>WeB12.2</td>
<td>Data-Driven Model Predictive Control of a Nonlinear Ball-On-A-Wheel System, pp. 887-892.</td>
<td>Kruse, Niklas; Wache, Alexander; Aschemann, Harald; Starke, Jens</td>
</tr>
<tr>
<td>WeB12.3</td>
<td>Deep Koopman-Based Control of Quality Variation in Multistage Manufacturing Systems, pp. 893-898.</td>
<td>Chen, Zhiyi; Maske, Harshal; Upadhayay, Devesh; Shui, Huanyi; Huan, Xun; Ni, Jun</td>
</tr>
<tr>
<td>WeB12.4</td>
<td>Training and Generalization Errors for Underparameterized Neural Networks, pp. 899-904.</td>
<td>Martin Xavier, Daniel; Chamoin, Ludovic; Fribourg, Laurent</td>
</tr>
<tr>
<td>WeB12.5</td>
<td>Tube MPC-Based Tracking Control of AUVs Using Contraction Metric, pp. 905-910.</td>
<td>Zhang, Kunwu; Shi, Yang</td>
</tr>
<tr>
<td>WeB12.6</td>
<td>Learning-Based Distributed Model Predictive Control with State-Dependent Uncertainty Using Neural Network, pp. 911-918.</td>
<td>Tong, Junbo; Du, Shuhan; Fan, Wenhui</td>
</tr>
</tbody>
</table>

WeB13 Richmond

Constrained Control I (Regular Session)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WeB13.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Composing Control Barrier Functions for Complex Safety Specifications, pp. 919-924.
Molnar, Tamas G.; Ames, Aaron D.

13:45-14:00 Web13.2
Minimum-Time Planar Paths with up to Two Constant Acceleration Inputs and L_2 Velocity and Acceleration Constraints, pp. 925-930.
Montano, Victor; Zhao, Haoran; Abdurahiman, Nihal; Navkar, Nikhil
Vishwas; Becker, Aaron

14:00-14:15 Web13.3
Data-Driven Synthesis of Configuration-Constrained Robust Invariant Sets for Linear Parameter-Varying Systems, pp. 931-936.
Mejari, Manas; Mulagaleti, Sampath; Kumar; Bemporad, Alberto

14:15-14:30 Web13.4
Safety Index Synthesis with State-Dependent Control Space, pp. 937-942.
Chen, Rui; Zhao, Weiye; Liu, Changliu

14:30-14:45 Web13.5
Danielson, Claus; Brandt, Theo

14:45-15:00 Web13.6
Paredes, Victor; Hereid, Ayonga

Web14 Wellington
Modeling, Control and Estimation of Soft Material and Continuum Systems (Invited Session)
Chair: Vikas, Vishesh
University of Alabama
Co-Chair: Chen, Zheng
University of Houston
Organizer: Vikas, Vishesh
University of Alabama
Organizer: Gilbert, Hunter B.
Louisiana State University
Organizer: Zhao, Jianguo
Colorado State University
Organizer: Tan, Xiaobo
Michigan State University

13:30-13:45 Web14.1
Physics-Informed Online Estimation of Stiffness and Shape of Soft Robotic Manipulators (I), pp. 957-962.
Fairchild, Preston; Mei, Yu; Tan, Xiaobo

13:45-14:00 Web14.2
Haghshenas-Jaryani, Mahdi

14:00-14:15 Web14.3
Kaaya, Theophilus; Koc, Denizcan; Zhu, Qiang; Chen, Zheng

14:15-14:30 Web14.4
Modeling and Inverse Compensation of the Non-Smooth Coiling-Induced Actuation in Twisted and Coiled String Actuators, pp. 975-980.
Konda, Revanth; Zhang, Jun

14:30-14:45 Web14.5
Efficient Learning and Control of String-Type Artificial Muscle Driven Robotic Systems, pp. 981-987.
Tao, Jiyue; Rajendran, Sunil Kumar; Zhang, Yunsong; Zhao, Feitian; Zhao, Dexin; Shen, Tongsheng

Web15 Yonge
Estimation and Control of Distributed Parameter Systems I (Invited Session)
Chair: Demetriou, Michael A.
Worcester Polytechnic Institute
Co-Chair: Hu, Weiwei
University of Georgia
Organizer: Demetriou, Michael A.
Worcester Polytechnic Institute
Organizer: Hu, Weiwei
University of Georgia

13:30-13:45 Web15.1
Limit Cycle Generation in Van Der Pol Flavored PDE Setting (I), pp. 988-993.
Aguilar, Luis T.; Orlov, Yuri

13:45-14:00 Web15.2
Rates of Convergence in a Class of Native
Spaces for Reinforcement Learning and Control (I), pp. 994-999.
Bouland, Ali; Niu, Shengyuan; Paruchuri, Sai Tej; Kurdila, Andrew J.; Burns, John A; Schuster, Eugenio

14:00-14:15 WeB15.3
Distributed Dynamic Encirclement Control for First-Order Multi-Agent Systems with Communication Delay (I), pp. 1000-1005.
Hasanzadeh, Milad; Tang, Shuxia

14:15-14:30 WeB15.4
Predictor-Based Prescribed-Time Output Feedback for a Parabolic PDE (I), pp. 1006-1011.
Zekraoui, Salim; Espitia, Nicolas; Perruquet, Wilfrid; Krstic, Miroslav

14:30-14:45 WeB15.5
Practical Observers for Velocity Field Estimation of Normal Flow Equations (I), pp. 1012-1017.
Alessandri, Angelo; Bagnerini, Patrizia; Gaggero, Mauro; Mantelli, Luca

14:45-15:00 WeB15.6
Distributed Flocking Control with Ellipsoidal Level Sets, pp. 1018-1023.
Hastedt, Philipp; Datar, Adwait; Kocev, Kliment; Werner, Herbert

WeB16 Dockside 4
Wind Turbines and Wind Farms (Invited Session)
Chair: Sinner, Michael
Co-Chair: Mulders, Sebastiaan Paul
Organizer: Mulders, Sebastiaan Paul
Organizer: Sinner, Michael
Organizer: Bay, Christopher
Organizer: Fleming, Paul
Organizer: van Wingerden, Jan-Willem
National Renewable Energy Laboratory
Delft University of Technology
National Renewable Energy Laboratory
National Renewable Energy Laboratory
Delft University of Technology

13:30-13:45 WeB16.1

WeB16 Dockside 4
Short-Term Wind Forecasting Using Surface Pressure Measurements (I), pp. 1024-1029.
Abootorabi, Seyedalireza; Leonard, Stefano; Rotea, Mario; Zare, Armin

13:45-14:00 WeB16.2
Analysis of Extremum Seeking Control for Wind Turbine Torque Controller Optimization by Aerodynamic and Generator Power Objectives (I), pp. 1030-1037.
Mulders, Sebastiaan Paul; Gallo, Alexander J.; Rotea, Mario

14:00-14:15 WeB16.3
Putri, Saskia; Hosseinipour, Ali; Ge, Xiaoyu; Moazeni, Farrah; Khazaei, Javad

14:15-14:30 WeB16.4
Reinforcement Learning Control for Enhancing Marine Hydrokinetic Turbine Energy Generation (I), pp. 1044-1050.
Barton, Samuel; Brekken, Ted; Cao, Yue

14:30-14:45 WeB16.5
H Infinity Phase Locking Control for Wave Induced Wake Mixing (I), pp. 1051-1056.
v d den Berg, Daniel; De Tavernier, Delphine; van Wingerden, Jan-Willem

14:45-15:00 WeB16.6
Self-Learning Data-Driven Wind Farm Control Strategy Using Field Measurements (I), pp. 1057-1064.
Hulsman, Paul; Howland, Michael; Göcmen, Tuhfe; Petrović, Vlaho; Kühr, Martin

WeB17 Dockside 5
Cooperative Control (Regular Session)
Chair: Chen, Lijun
Co-Chair: Liu, Junwei
National Renewable Energy Laboratory
Southern University of Science and Technology

13:30-13:45 WeB17.1
Fully Distributed Consensus of Multi-Agent Systems with Improved Minimum Inter-Event Times, pp. 1065-1070.
Su, Ruchao; Li, Xianwei; Li, Shaoyuan
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:45-14:00</td>
<td>WeB17.2</td>
<td>Dynamic Event-Trigged Control for Multi-Agent Consensus with Relative Output Feedback</td>
<td>Zhan, Sikang; Li, Xianwei</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB17.3</td>
<td>Unbounded Cooperative Pursuit Using a Linearized Safe-Reachable Set</td>
<td>Ouyang, Zikai; Liu, Junwei; Lu, Haibo; Zhang, Wei</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>WeB17.4</td>
<td>ROMA-iQSS: An Objective Alignment Approach Via State-Based Value Learning and ROund-Robin MultiAgent Scheduling</td>
<td>Lin, Chi-Hui; Koh, Joewie J.; Roncone, Alessandro; Chen, Lijun</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>WeB17.5</td>
<td>MR.CAP: Multi-Robot Joint Control and Planning for Object Transport</td>
<td>Jaafar, Hussein Ali; Kao, Cheng-Hao; Saeedi, Sajad</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>WeB17.6</td>
<td>Distributed Dual-Layer Adaptive Event-Trigged Formation Tracking for Quadrotor UAVs</td>
<td>Chen, Tianxing; Zhang, Hongwei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>WeB18.1</td>
<td>Convex Stability of Interconnections-Free X Shaped Real Square Matrices: New Conditions Using Transformation Allergic Indices and Proper $X^a(0)$ Definition</td>
<td>Yedavalli, Rama K.</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>WeB18.2</td>
<td>Transformation Allergic Index Singularity: A Hidden Premature Instability Unrecognizable</td>
<td>Yedavalli, Rama K.</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB18.3</td>
<td>Distributed Stability Conditions for Interconnected LTI Systems Based on Differential Interconnection Neutral Functions</td>
<td>Kristov, Pietro; Jokiç, Andrej</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>WeB18.4</td>
<td>Stabilization of Almost Periodic Piecewise Linear Systems with Norm-Bounded Uncertainty for Roll-To-Roll Dry Transfer Manufacturing Processes</td>
<td>Martin, Christopher; Li, Wei; Chen, Dongmei</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>WeB18.5</td>
<td>A Dissipativity Framework for Input-To-State Stability with Positivity of Dynamical Systems with Interior Equilibria</td>
<td>Ito, Hiroshi</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>WeB18.6</td>
<td>Hybrid Feedback Control for Global and Optimal Safe Navigation</td>
<td>Cheniouni, Ishak; Berkane, Soulaime; Tayebi, Abdelhamid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>WeB19.1</td>
<td>Robust Model Predictive Control for Networked Control Systems with Timing Perturbations</td>
<td>Wang, Renke; Yao, Ningshi</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>WeB19.2</td>
<td>Data-Driven Superstabilization of Linear Systems under Quantization</td>
<td>Miller, Jared; Zheng, Jian; Szaiaer, Mario; Hixenbaugh, Chris</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>WeB19.3</td>
<td>Achieving Optimal Performance with Data-Driven Frequency-Based Control Synthesis Methods</td>
<td>Yedavalli, Rama K.</td>
</tr>
</tbody>
</table>
WeB19.4

Schuchert, Philippe; Karimi, Alireza

14:15-14:30

Chen, Yijun; Petersen, Ian R.; Ratnam, Elizabeth

WeB19.5

14:30-14:45

Distributionally Robust Path Integral Control, pp. 1164-1171.

Park, Hyuk; Zhou, Duo; Hanasusanto, Grani A.; Tanaka, Takashi

WeB19.6

14:45-15:00

Safe Tracking Control of Discrete-Time Nonlinear Systems Using Backward Reachable Sets, pp. 1172-1179.

Serry, Mohamed; Yang, Liren; Ozay, Necmiye; Liu, Jun

WeB20

Kalman Filtering (Regular Session)

Chair: Molloy, Timothy L. Australian National University
Co-Chair: Chen, Tongwen University of Alberta

13:30-13:45

Data-Driven Stealthy Attacks on Remote State Estimation with Sliding-Window Anomaly Detectors, pp. 1180-1185.

Guo, Ziyi; Zhou, Jing; Chen, Tongwen

13:45-14:00

Crouse, Steven; Prasad, Rupanjali; Rousseau, Ronald; Grover, Martha

14:00-14:15

Uzzaman, Nahid; Bai, He

14:15-14:30

Rotondo, Damiano; Witczak, Marcin; Seybold, Lothar

14:30-14:45

Two-Channel Extended Kalman Filtering with Intermittent Measurements, pp. 1204-1211.

Maer, Vicu-Mihalis; Lendek, Zsofia; Pirje, Stefan; Tolic, Domagoj; Duraš, Antun; Prka in, Vicko; Palunko, Ivana; Busoniu, Lucian

14:45-15:00

Extended Kalman Filtering for Recursive Online Discrete-Time Inverse Optimal Control, pp. 1212-1218.

Zhao, Tian; Molloy, Timothy L.

WeB21

Linear Systems (Regular Session)

Chair: Drummond, Ross University of Sheffield
Co-Chair: Jokic, Andrej University of Zagreb

13:30-13:45

Kristović, Pietro; Jokic, Andrej

13:45-14:00

Ossareh, Hamid; Dörfler, Florian

14:00-14:15

Externally Positive Linear Systems from Transfer Function Properties, pp. 1231-1236.

Drummond, Ross; Turner, Matthew C.

14:15-14:30

Narendra, Kumpati S.; George, Koshy

14:30-14:45

On Formalisation of Martin Distance for Linear Dynamical Systems, pp. 1243-1248.

Sinha, Subhrajit; Nandanoori, Sai Pushpak; Huang, Bowen; Ramachandran, Thiagarajan; Bakker, Craig

14:45-15:00

WeC01 Metro E/C
Machine Learning II (Regular Session)
Chair: Xu, Zeyuan National University of Singapore
Co-Chair: Jin, Ming Virginia Tech
15:30-15:45 WeC01.1
Is Data All That Matters? the Role of Control Frequency for Learning-Based Sampled-Data Control of Uncertain Systems, pp. 1249-1255.
Römer, Ralf; Brunke, Lukas; Zhou, Siqi; Schoellig, Angela P
15:45-16:00 WeC01.2
Federated Learning-Based Distributed Model Predictive Control of Nonlinear Systems, pp. 1256-1262.
Xu, Zeyuan; Wu, Zhe
16:00-16:15 WeC01.3
Optimization Solution Functions As Deterministic Policies for Offline Reinforcement Learning, pp. 1263-1268.
Khattar, Vanshaj; Jin, Ming
16:15-16:30 WeC01.4
Hassanpour, Hesam; Mhaskar, Prashant; Corbett, Brandon
16:30-16:45 WeC01.5
Reed, Robert; Laurenti, Luca; Lahijanian, Morteza

WeC02 Harbour
Network Control Systems II (Regular Session)
Chair: Rojas, Alejandro J. Universidad De Concepción
Co-Chair: Davoodi, Mohammadreza University of Georgia
15:30-15:45 WeC02.1
Nonminimum Phase Zeros Effect on the Signal-To-Noise Ratio Channel Input

WeC03 Frontenac
Autonomous Robots II (Regular Session)
Chair: Seo, Joohwan University of California, Berkeley
Co-Chair: Coogan, Samuel Georgia Institute of Technology
15:30-15:45 WeC03.1
Strebe, Luke; Lee, Kooktae
15:45-16:00 WeC03.2
Cooperative 3-D Active Multi-Robot Multi-Target Tracking, pp. 1317-1322.
Xu, Jie; Zhu, Pengxiang; Ren, Wei
16:00-16:15 WeC03.3

Constraint in Continuous Time, pp. 1281-1286.
Rojas, Alejandro J.
15:45-16:00 WeC02.2
Multi-Event-Triggered Control with Reduced Packet Sizes for Quantized Discrete-Time Linear Systems, pp. 1287-1292.
Batmani, Yazdan; Karimi, Zahra; Davoodi, Mohammadreza
16:00-16:15 WeC02.3
Cho, Minhyun; Hwang, Soung-hwan; Hwang, Inseok
16:15-16:30 WeC02.4
Second-Order Heterogeneous Multi-Agent Target Tracking without Relative Velocities, pp. 1299-1304.
Nino, Cristian F.; Patil, Omkar Sudhir; Dixon, Warren E.
16:30-16:45 WeC02.5
Basu, Himadri; Fiacchini, Mirko; Ferrante, Francesco; Gomes da Silva Jr, Joao Manoel

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>WeC03.4</td>
<td>Two-Layer Diffusion Adaptive Filters Over Directed Markovian Switching Networks</td>
<td>Xie, Siyu; Gan, Die; Liu, Zhixin</td>
<td>16:30-16:45</td>
</tr>
<tr>
<td>WeC03.5</td>
<td>Extremum Seeking for a Class of Wave Partial Differential Equations with Kelvin-Voigt Damping</td>
<td>Silva, Paulo Cesar Souza; Pellanda, Paulo Cesar; Oliveira, Tiago Roux; de Andrade, Gustavo Artur; Krstic, Miroslav</td>
<td>15:45-16:00</td>
</tr>
<tr>
<td>WeC03.6</td>
<td>Distributed Optimization of Network Weights for Improved Performance</td>
<td>Xu, Yicheng; Jabbari, Faryar</td>
<td>16:00-16:15</td>
</tr>
<tr>
<td>WeC04.1</td>
<td>Nonlinear Observer Design for Vehicle Lateral Load Transfer Ratio Estimation</td>
<td>Meng, Shengya; Meng, Fanwei; Zhang, Fan; Alma, Marouane; Haddad, Madjid; Zemouche, Ali</td>
<td>15:30-15:45</td>
</tr>
<tr>
<td>WeC04.2</td>
<td>Simple but Useful Contributions to High-Gain Observer for Non-Triangular Systems</td>
<td>Arezki, Hasni; Zemouche, Ali</td>
<td>15:45-16:00</td>
</tr>
<tr>
<td>WeC04.3</td>
<td>Controlling UAVs by Sensing the Electric or the Magnetic Field Around Power Lines</td>
<td>Satici, Aykut C; Peterson, Alex; Chiasson, John; Adams, Zachary</td>
<td>16:15-16:30</td>
</tr>
<tr>
<td>WeC04.4</td>
<td>On-Line Motion Planning Using Bernstein Polynomials for Enhanced Target Localization in Autonomous Vehicles</td>
<td>Tabasso, Camilla; Cichella, Venanzio</td>
<td>16:15-16:30</td>
</tr>
<tr>
<td>WeC04.5</td>
<td>Safe Online Convex Optimization with First-Order Feedback</td>
<td>Hutchinson, Spencer; Alizadeh, 97</td>
<td>16:30-16:45</td>
</tr>
</tbody>
</table>
WeC05.5 16:30-16:45 Mahnoosh

Tao, Qinghua; Xi, Xiangming; Xu, Jun; Suykens, J.A.K.

WeC05.6 16:45-17:00 WeC05.5

Optimal Loop Shaping and Disturbance Rejection Beyond the Nyquist Frequency Using a Forward Model Disturbance Observer and Convex Optimization Based Filter Design, pp. 1417-1422.
Chu, Thomas; Hu, Xiaohai; Chen, Xu

WeC06 Queens Quay 1

Modeling and State Estimation for Batteries (Invited Session)

Chair: Song, Ziyou University of Michigan, Ann Arbor
Co-Chair: De Castro, Ricardo University of California, Merced
Organizer: Zhang, Dong University of Oklahoma
Organizer: Soudbaksh, Damoon Temple University
Organizer: Jain, Neera Purdue University
Organizer: Dey, Satadru The Pennsylvania State University
Organizer: Tang, Shuxia Texas Tech University
Organizer: Roy, Tanushree Texas Tech University
Organizer: Moura, Scott University of California, Berkeley
Organizer: Lin, Xinfan University of California, Davis
Organizer: De Castro, Ricardo University of California, Merced
Organizer: Song, Ziyu University of Michigan, Ann Arbor
Organizer: Fogelquist, Jackson University of California, Davis

15:30-16:15 WeC06.1 **Bias-Compensated State Estimation Algorithm for LFP Batteries with Flat OCV-SOC Curves (I)**, pp. 1423-1428.

16:15-16:30 WeC06.2 Yi, Baozhao; Zhang, Jiawei; Song, Ziyu

Nonlinear Fractional Dynamics Integrated Physics-Informed Neural Network Model for LiFePO4 Batteries in Electric Vehicles (I), pp. 1429-1434.
Borah, Manashita; Jiang, Shida; Shi, Junzhe; Moura, Scott

16:00-16:15 WeC06.3 **Lightweight Electrochemical Hybrid Modeling Approach for Li-Ion Batteries Using Gaussian Process Regression (I)**, pp. 1435-1440.
Fogelquist, Jackson; Lin, Xinfan

16:15-16:30 WeC06.4 **Weaknesses and Improvements of the Extended Kalman Filter for Battery State-Of-Charge and State-Of-Health Estimation (I)**, pp. 1441-1448.
Jiang, Shida; Shi, Junzhe; Borah, Manashita; Moura, Scott

16:30-16:45 WeC06.5 **Interconnected Sigma-Point Kalman Filter Application for Electrochemical State Estimation of Lithium-Ion Batteries**, pp. 1449-1454.
Kawakita de Souza, Aloisio Henrique; Plett, Gregory L.; Trimboli, Michael

WeC07 Queens Quay 2

Traffic Control I (Regular Session)

Chair: Malioukopoulos, Andreas A. Cornell University
Co-Chair: Timotheou, Stelios University of Cyprus

15:30-15:45 WeC07.1 **Safe Optimal Interactions between Automated and Human-Driven Vehicles in Mixed Traffic with Event-Triggered Control Barrier Functions**, pp. 1455-1460.
Li, Anni; Cassandras, Christos G.; Xiao, Wei

15:45-16:00 WeC07.2 **Parameter Estimation in Optimal Tolling for Traffic Networks under the Markovian Traffic Equilibrium**, pp. 1461-1467.
Chiu, Chih-Yuan; Sastry, Shankar
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00-16:15</td>
<td>WeC07.3</td>
<td>Decentralized Optimal Merging Control for Mixed Traffic with Vehicle Inference, pp. 1468-1473.</td>
<td>Xiao, Wei; Cassandras, Christos G.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>WeC07.4</td>
<td>Optimizing the Crossing Sequence in Autonomous Intersection Management with Travel Time and Energy Considerations, pp. 1474-1479.</td>
<td>Hadjigeorgiou, Andreas; Timotheou, Stelios</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>WeC07.5</td>
<td>Global Stabilization of Nash Equilibrium for Mixed Traffic, pp. 1480-1487.</td>
<td>Scruiggs, Jeff; Lee, Richard; Yin, Yafeng</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>WeC07.6</td>
<td>Routing in Mixed Transportation Systems for Mobility Equity, pp. 1488-1493.</td>
<td>Bang, Heeseung; Dave, Aditya Deepak; Malikopoulos, Andreas A.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>WeC08.1</td>
<td>Fault Identification Enhancement with Reinforcement Learning (FIERL), pp. 1494-1499.</td>
<td>Sartor, Davide; Zaccaria, Valentina; Del Favero, Simone; Susto, Gian Antonio</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>WeC08.3</td>
<td>Dual-Stream Cross-Modal Feature Fusion Based on Multi-Scale Attention for Industrial Fault Diagnosis, pp. 1506-1511.</td>
<td>Lian, Penglong; Shang, Penghui; Zhang, Jiyang; Su, Zhiheng; Zou, Jianxiao; Fan, Shicai</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>WeC08.5</td>
<td>Detection of Valve Stiction in Industrial Control Loops through Continuous Wavelet Transformation with a CNN, pp. 1512-1517.</td>
<td>Gunnell, LaGrande; Perez, Krystian X; Castillo, Ivan; Hoogerwerf, Rob; Smith, Alexander; Peng, You; Hedengren, John</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>WeC08.6</td>
<td>Disturbance Decoupled Functional Observers for Fault Estimation in Nonlinear Systems, pp. 1518-1524.</td>
<td>Venkateswaran, Sunjeev; Kravaris, Costas</td>
</tr>
</tbody>
</table>

WeC08 Bay Fault Diagnosis (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>WeC08.1</td>
<td>Fault Identification Enhancement with Reinforcement Learning (FIERL), pp. 1494-1499.</td>
<td>Sartor, Davide; Zaccaria, Valentina; Del Favero, Simone; Susto, Gian Antonio</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>WeC08.2</td>
<td>Fault Detection in Closed-Loop Systems Based on Inferential Sensors, pp. 1500-1505.</td>
<td>Safikou, Efi; Bollas, George</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>WeC08.3</td>
<td>Dual-Stream Cross-Modal Feature Fusion Based on Multi-Scale Attention for Industrial Fault Diagnosis, pp. 1506-1511.</td>
<td>Lian, Penglong; Shang, Penghui; Zhang, Jiyang; Su, Zhiheng; Zou, Jianxiao; Fan, Shicai</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>WeC08.5</td>
<td>Detection of Valve Stiction in Industrial Control Loops through Continuous Wavelet Transformation with a CNN, pp. 1512-1517.</td>
<td>Gunnell, LaGrande; Perez, Krystian X; Castillo, Ivan; Hoogerwerf, Rob; Smith, Alexander; Peng, You; Hedengren, John</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>WeC08.6</td>
<td>Disturbance Decoupled Functional Observers for Fault Estimation in Nonlinear Systems, pp. 1518-1524.</td>
<td>Venkateswaran, Sunjeev; Kravaris, Costas</td>
</tr>
</tbody>
</table>

WeC09 Dockside 1 Flight Control (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>WeC09.1</td>
<td>Multi-Outer Loop Dynamic Inversion Control: An Application to a VTOL Free-Wing Aircraft, pp. 1531-1536.</td>
<td>Axten, Rachel; Khamvilai, Thanakorn; Johnson, Eric</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>WeC09.2</td>
<td>Multi-Agent Reinforcement Learning for the Low-Level Control of a Quadrotor UAV, pp. 1537-1542.</td>
<td>Yu, Beomyeol; Lee, Taeyoung</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>WeC09.3</td>
<td>Hybrid Control Framework of UAVs under Varying Wind and Payload Conditions, pp. 1543-1549.</td>
<td>Coursey, Austin; Zhang, Allan; Quinones-Gruieiro, Marcos; Biswas, Gautam</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>WeC09.4</td>
<td>Trajectory Tracking for Tilted Hexarotors with Concurrent Attitude Regulation, pp. 1550-1555.</td>
<td></td>
</tr>
</tbody>
</table>
A Hammerstein-Weiner Modification of Adaptive Autopilot for Parameter Drift Mitigation with Experimental Results, pp. 1556-1561.

Application of a Robust Nonlinear Control Strategy for Disturbance-Resilient Tilt-Rotor Quadcopter Trajectory Tracking, pp. 1562-1567.

Data-Driven Model Predictive Control of Airfoil Flow Separation, pp. 1568-1573.

Enhancing Human Operator Performance with Long Short-Term Memory Networks in Adaptively Controlled Systems, pp. 1580-1585.

Newton Bases and Event-Triggered Adaptive Control in Native Spaces, pp. 1586-1591.

WeC10 Adaptive Control I (Regular Session) Dockside 2
Chair: Cenedese, Angelo
Co-Chair: Kiumarsi, Bahare

15:30-15:45 WeC10.1
Learning How to Strategically Disclose Information, pp. 1604-1609.
Velicheti, Raj Kiriti; Bastopcu, Melih; Etesami, Rasoul; Basar, Tamer

15:45-16:00 WeC10.2
Wang, Mingrui; Chakraborty, Prakash

16:00-16:15 WeC10.3
Large Decentralized Continuous-Time Convex Stochastic Teams and Their Mean-Field Limits, pp. 1616-1621.
Sanjari, Sina; Saldi, Naci; Yuksel, Serdar

16:15-16:30 WeC10.4
Rationality and Connectivity in Stochastic Learning for Networked Coordination Games, pp. 1622-1627.
Zhang, Yifei; Vasconcellos, Marcos M.

16:30-16:45 WeC11.1
Sun, Donglei; Hovakimyan, Naira

16:45-17:00 WeC10.5
A Natural Indirect Adaptive Controller for a Satellite-Mounted Manipulator, pp. 1598-1603.
Giordano, Jacopo; Cenedese, Angelo; Serrani, Andrea

16:45-17:00 WeC10.6
A Natural Indirect Adaptive Controller for a Satellite-Mounted Manipulator, pp. 1598-1603.
Giordano, Jacopo; Cenedese, Angelo; Serrani, Andrea

16:45-17:00 WeC11.2
Wang, Mingrui; Chakraborty, Prakash

16:00-16:15 WeC10.3
Large Decentralized Continuous-Time Convex Stochastic Teams and Their Mean-Field Limits, pp. 1616-1621.
Sanjari, Sina; Saldi, Naci; Yuksel, Serdar

16:15-16:30 WeC10.4
Rationality and Connectivity in Stochastic Learning for Networked Coordination Games, pp. 1622-1627.
Zhang, Yifei; Vasconcellos, Marcos M.

16:30-16:45 WeC11.1
Sun, Donglei; Hovakimyan, Naira

16:45-17:00 WeC10.5
A Natural Indirect Adaptive Controller for a Satellite-Mounted Manipulator, pp. 1598-1603.
Giordano, Jacopo; Cenedese, Angelo; Serrani, Andrea

16:45-17:00 WeC10.6
A Natural Indirect Adaptive Controller for a Satellite-Mounted Manipulator, pp. 1598-1603.
Giordano, Jacopo; Cenedese, Angelo; Serrani, Andrea

16:45-17:00 WeC11.2
Wang, Mingrui; Chakraborty, Prakash

16:00-16:15 WeC11.3
Large Decentralized Continuous-Time Convex Stochastic Teams and Their Mean-Field Limits, pp. 1616-1621.
Sanjari, Sina; Saldi, Naci; Yuksel, Serdar

16:15-16:30 WeC11.4
Rationality and Connectivity in Stochastic Learning for Networked Coordination Games, pp. 1622-1627.
Zhang, Yifei; Vasconcellos, Marcos M.

16:30-16:45 WeC11.5
Gould, Brendan; Brown, Philip N.
Equilibrium Selection in Data Markets: Multiple-Principal, Multiple-Agent Problems with Non-Rivalrous Goods, pp. 1634-1639.
Wadhwa, Samir; Dong, Roy

WeC12 Dockside 9
Predictive Control for Nonlinear Systems II (Regular Session)
Chair: Han, Kyungpook National University
Co-Chair: Mohammadpour Velni, Javad

15:30-15:45 WeC12.1
Park, Suyong; Nguyen, Duc Giap; Park, Jinrak; Kim, Dohee; Eo, Jeong Soo; Han, Kyungpook National University

15:45-16:00 WeC12.2
Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks, pp. 1646-1651.
Alsmeyer, Hendrik; Savchenko, Anton; Findeisen, Rolf

16:00-16:15 WeC12.3
Model Predictive Control Barrier Functions: Guaranteed Safety with Reduced Conservatism and Shortened Horizon, pp. 1652-1657.
Abdi, Hossein; Zhao, Pan; Hovakimyan, Naira; Ghacheloo, Reza

16:30-16:45 WeC12.5
Nejatbakhsh Esfahani, Hossein; Ahmadi, Sajad; Mohammadpour Velni, Javad

16:45-17:00 WeC12.6
Alamir, Mazen

WeC13 Richmond

WeC14 Wellington
Advanced Control for Safe Process Operations (Invited Session)
Chair: Durand, Wayne State

Constrained Control II (Regular Session)
Chair: Nicotra, University of Colorado Boulder
Co-Chair: Richards, Christopher University of Louisville

15:30-15:45 WeC13.1
Franca dos Santos, Geovana; Castelan, Eugenio B.; Lucia, Walter

15:45-16:00 WeC13.2
Liang, Kaier; Cai, Mingyu; Vasile, Cristian loan

16:00-16:15 WeC13.3
Skibik, Terrence; Nicotra, Marco M

16:15-16:30 WeC13.4
Safe Motion Planning for Serial-Chain Robotic Manipulators Via Invariant Sets, pp. 1689-1694.
Brandt, Teo; Fierro, Rafael; Danielsson, Claus

16:30-16:45 WeC13.5
Anti-Windup Compensator Design for Guidance and Control of Quadrotors, pp. 1695-1700.
Shahbazzadeh, Majid; Richards, Christopher

16:45-17:00 WeC13.6
Modelling a Broad Class of Actuator Saturations Using Takagi-Sugeno Models with a Reduced Number of Local Models, pp. 1701-1706.
Bainier, Gustave; Marx, Benoit; Ponsart, Jean-Christophe
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>WeC14.1</td>
<td>Dynamic Risk-Based Model Predictive Quality Control with Online Model Updating (I), pp. 1707-1712.</td>
<td>Braniff, Austin; Tian, Yuhe</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>WeC14.2</td>
<td>Synthesis of Data-Driven Nonlinear State Observers Using Lipschitz-Bounded Neural Networks (I), pp. 1713-1719.</td>
<td>Tang, Wentao</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>WeC14.3</td>
<td>Bootstrapped Gross Error Detection for Efficient and Fault-Tolerant Real-Time Optimization (I), pp. 1720-1725.</td>
<td>Patron, Gabriel David; Ricardo-Sandoval, Luis</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>WeC14.4</td>
<td>A Set-Based Control Mode Selection Approach for Active Detection of False Data Injection Cyberattacks (I), pp. 1726-1731.</td>
<td>Narasimhan, Shilpa; El-Farra, Nael H.; Ellis, Matthew</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>WeC14.5</td>
<td>Lyapunov-Based Model Predictive Control Using Operable Adaptive Sparse Identification of Systems (OASIS) (I), pp. 1732-1737.</td>
<td>Bhadiraju, Bhavana; Kwon, Joseph; Khan, Faisal</td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>WeC15</td>
<td>Finite-Time Boundary Stabilization for LWR Traffic Flow Model (I), pp. 1738-1743.</td>
<td>Zhao, Hanxu; Zhan, Jingyuan; Zhang, Liguo</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>WeC15.2</td>
<td>Adaptive and Optimal Spatial PD Coupling in Synchronization Control of Networked Second-Order Infinite Dimensional Systems (I), pp. 1744-1750.</td>
<td>Demetriou, Michael A.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>WeC15.3</td>
<td>Controllability and Optimal Control of Water Networks – a Comparison of Three Lumped Models (I), pp. 1751-1756.</td>
<td>Baumann, Henry; Schaum, Alexander; Meurer, Thomas</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>WeC15.4</td>
<td>Neural Operator Approximations of Backstepping Kernels for 2x2 Hyperbolic PDEs (I), pp. 1757-1763.</td>
<td>Wang, Shanshan; Diagne, Mamadou; Krstic, Miroslav</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>WeC15.5</td>
<td>Modeling and Detection of Cyber-Attacks on Highway Networks Using a 2D-LWR Model and Gaussian Processes (I), pp. 1764-1770.</td>
<td>Kashyap, Abhishek; Chakravarthy, Animesh; Menon, Prathyush P</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>WeC15.6</td>
<td>Distributed Biconnectivity Achievement and Preservation in Multi-Agent Systems, pp. 1771-1776.</td>
<td>Restrepo, Esteban; Robuffo Giordano, Paolo</td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>WeC16</td>
<td>Resilient Decentralized Control of Power Buffers in DC Microgrids, pp. 1777-1782.</td>
<td>Qian, Yangyang; Zhou, Siyu; Lin, Zongli;</td>
</tr>
</tbody>
</table>

WeC15

Estimation and Control of Distributed Parameter Systems II (Invited Session)

Chair: Hu, Weiwei

Co-Chair: Demetriou, Michael A.

Organizer: Hu, University of Georgia

WeC16

Smart Grid (Regular Session)

Chair: Barooah, Prabir

Co-Chair: Caiazzo, Bianca

Chair: Barooah, Prabir

Indian Institute of Technology, Guwahati

University of Naples Federico II
WeC16.2
Prescribed-Time Consensus Control for the Voltage Restoration in Inverter-Based Islanded Microgrids, pp. 1783-1788.
Caiazzo, Bianca; Lui, Dario Giuseppe; Petrillo, Alberto; Lecesse, Sara; Santini, Stefania; Andreotti, Amedeo
15:45-16:00

WeC16.3
Competitive Equilibrium in Microgrids with Dynamic Loads, pp. 1789-1794.
Salehi, Zeinab; Chen, Yijun; Petersen, Ian R.; Ratnam, Elizabeth; Shi, Guodong
16:00-16:15

WeC16.4
Comments on Characterizing Demand Flexibility to Provide Power Grid Services, pp. 1795-1800.
Barooah, Prabir
16:15-16:30

WeC16.5
Robust Microgrid Energy Management System through a Scenario Approach, pp. 1801-1806.
Del Duca, Alessandro; Ruiz, Fredy; Scattolini, Riccardo
16:30-16:45

WeC16.6
Zhang, Hang; Zheng, Ronghao; Zhang, Senlin; Liu, Meiqin
16:30-16:45

WeC17
Dockside 5
Distributed Control I (Regular Session)
Chair: Sarsilmaz, Selahattin Burak
Co-Chair: Jensen, Emily University of California, Berkeley
15:30-15:45
Trade-Off between Privacy and Accuracy in Resilient Vector Consensus, pp. 1807-1812.
Liu, Bing; Zhao, Chengcheng
15:45-16:00

WeC18
Dockside 6
Stability of Nonlinear Systems I (Regular Session)
Chair: Liu, Xinzhi University of Waterloo
Co-Chair: Umathe, Bhagyashree Clemson University
15:30-15:45
Global Exponential Stability or Contraction of an Unforced System Do Not Imply Entrainment to Periodic Inputs, pp. 1837-1842.
Duvall, Alon; Sontag, Eduardo
15:45-16:00

WeC17.1
Trade-Off between Privacy and Accuracy in Resilient Vector Consensus, pp. 1807-1812.
Liu, Bing; Zhao, Chengcheng
15:30-15:45

WeC17.2
Scalable Reinforcement Learning for Linear-Quadratic Control of Networks, pp. 1813-1818.
Olsson, Johan; Zhang, Runyu; Tegling, Emma; Li, Na
15:45-16:00

WeC17.3
Joint Design of Estimation and Control for Multi-Agent Systems with Bearing Measurements, pp. 1819-1824.
Fang, Xu; Li, Xiaolei; Xie, Lihua
16:00-16:15

WeC18.1
Global Exponential Stability or Contraction of an Unforced System Do Not Imply Entrainment to Periodic Inputs, pp. 1837-1842.
Duvall, Alon; Sontag, Eduardo
15:30-15:45

WeC18.2
Wei, Lai; McCloy, Ryan Josef; Bao, Jie
15:45-16:00

WeC18.3
Umathe, Bhagyashree; Vaidya, Umesh
16:00-16:15

WeC18.4
A Neural-Lyapunov-Based Adaptive Resilient Cruise Control of Platoons Subject to Cyber-Attacks on Leaders, pp. 1855-1860.
Khoshnevisan, Ladan; Liu, Xinzhi
16:15-16:30

WeC18.5
Souza, Andressa; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
16:30-16:45

WeC18.6
Guaranteed Stabilization and Safety of
WeC19
Robust Control II (Regular Session)
Chair: Yong, Sze
Co-Chair: Caverly, Ryan James
15:30-15:45
Tao, Ran; Zhao, Pan; Kolmanovsky, Ilya V.; Hovakimyan, Naira
15:45-16:00
Eyuboglu, Mert; Powell, Nathan; Karimi, Alireza
16:00-16:15
Caverly, Ryan James; Bageshwar, Vibhor
16:15-16:30
Mannini, Davide; Strässer, Robin; Rawlings, James B.
16:30-16:45
Closed Loop Intent-Expressive Trajectory Planning and Intent Estimation, pp. 1897-1903.
Gah, Elikplim; Yong, Sze Zheng
16:45-17:00
Wu, Alex (Xinting); Petersen, Ian R.; Ugrinovskii, Valery; Shames, Iman

WeC20
Filtering (Regular Session)
15:30-15:45
Fuady Emzir, Muhammad; Cheded, Lahouari
15:45-16:00
Du, Zhe; Balim, Haldun; Oymak, Samet; Ozay, Necmiye
16:00-16:15
Computational Optimal Transport and Filtering on Riemannian Manifolds, pp. 1921-1926.
Grange, Daniel; Al-Jarrah, Mohammad; Baptista, Riccardo; Taghvaee, Amirhossein; Georgiou, Tryphon T.; Tannenbaum, Allen
16:15-16:30
Kang, Dongyeop; Park, Chaneun
16:30-16:45
Chowdhury, Dhruvajit; Goyal, Raman; Rane, Shantanu
16:45-17:00
Dogadin, Egor; Perepugin, Alexey; Shirokii, Dmitriy
15:30-15:45 WeC21.1
Tu, Hao; Lin, Xinfan; Wang, Yebin; Fang, Huazhen

15:45-16:00 WeC21.2
Sheikh, Abdul Muiz Ahmad; Bergveld, Hendrik Johannes; Donkers, M.C.F.

16:00-16:15 WeC21.3
Kajiura, Yuichi; Espin, Jorge Esteban; Zhang, Dong

16:15-16:30 WeC21.4
Degradation Modes Identification of Lithium-Ion Batteries Based on Flexible Discharge Data, pp. 1965-1970.
Wang, Shuquan; Gao, Feng; Zhang, Yusen

16:30-16:45 WeC21.5
Sepasiahooyi, Sara; Tang, Shuxia

16:45-17:00 WeC21.6
le Roux, Francis Anne; Bergveld, Hendrik Johannes; Donkers, M.C.F.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:30</td>
<td>ThP1.1</td>
<td>A Control Systems Approach to Cell Fate Reprogramming</td>
<td>Del Vecchio, Domitilla</td>
<td>1983-1983</td>
</tr>
<tr>
<td>10:00-11:00</td>
<td>ThE1.1</td>
<td>Hybrid Dynamical Seeking Systems: Model-Free Feedback Decision-Making and Control (Eckman Plenary Session)</td>
<td>Poveda, Jorge I.</td>
<td>1984-1984</td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.1</td>
<td>Late-Breaking News Poster (Poster Session)</td>
<td>Moallem, Mehrdad; Mohagheghi, Afagh</td>
<td>1994-1994</td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.2</td>
<td>Advanced Bi-Layer Control System for Continuous Pharmaceutical Manufacturing Pilot-Plant*</td>
<td>Singh, Ravendra</td>
<td>1994-1994</td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.4</td>
<td>Sampling Theorem for Exact Identification of Continuous-Time Nonlinear Systems Based on the Koopman Operator, pp. 1987-1987.</td>
<td>Zeng, Zhexuan; Yue, Zuogong; Mauroy, Alexandre; Goncalves, Jorge; Yuan, Ye</td>
<td>1997-1997</td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.5</td>
<td>Latest Results on 24/7 Implementation of Neural Network Based Signal Control for Nimitz Highway in Honolulu, pp. 1988-1988.</td>
<td>Wang, Hong; Wang, Yiwei; Wang, Chieh (Ross); Shao, Yunli; Zhang, Guohui; Subramaniyan, Arun Bala</td>
<td>1988-1988</td>
</tr>
<tr>
<td>Time</td>
<td>Code</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.13</td>
<td>FPGA-Accelerated Particle Filter for High-Speed Target Localization in Edge Computing Devices, pp. 1996-1996. Kim, Daeyeon; Kim, Nayeon; Lee, Heoncheol; Choi, Wonseok; Jeong, Bora; Cho, Youngki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.16</td>
<td>Enhancing Nonlinear Chemical Process Monitoring with Neural Component Analysis Based Singular Spectrum Analysis (SSA-NCA), pp. 1999-1999. Ndunda, Enock; Krishnannair, Syamala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.18</td>
<td>Dynamic Extended-Output Observer Design for an Adaptive Vertical Farm Quadcopter, pp. 2001-2001. Chnib, Echrak; Bagnieri, Patrizia; Gaggero, Mauro; Zemouche, Ali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.19</td>
<td>Deep Reinforcement Learning Based Tracking Control of Van De Vusse Reactor, pp. 2002-2002. Ankalugari, Rahul Yadav; M U, Abuthahir; Magbool Jan, Nabli; Joseph, Ajin George</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.20</td>
<td>Temperature Estimation in Lithium-Ion Batteries through Cascaded Electrochemical-Thermal Models, pp. 2003-2003. Ferreira, Patryck; Tang, Shuxia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.23</td>
<td>Safe Deep Reinforcement Learning (RL) Agent Adapts the Cost Function Weights of a Weights-Varying MPC (WMPC), pp. 2006-2006. Zarrouki, Baha; Spanakakis, Marios; Betz, Johannes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.24</td>
<td>Noncontact Magnetic Manipulation Using Permanent Magnets, pp. 2007-2007. Ekanayake, Lahiru; Weerasekara Mudiyanseleage, Janaka Madhusankha; Basnet, Dhraj; Komae, Arash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.26</td>
<td>Uncertainty Quantification in Physiological Modeling Using Bayesian Variational Autoencoders, pp. 2009-2009. Estiri, Elham; Mirinejad, Hossein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.27</td>
<td>Reinforcement Learning and Nonlinear Integrated Controller for Guaranteed Local Stability, pp. 2010-2010. Nan, Shiqi; Chen, Chih-Chiang; Qian, Chunjiang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:45</td>
<td>ThPo1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elorza Casas, Carlos Andres; Pulsipher, Joshua; Ricardez-Sandoval, Luis
11:00-11:45 ThPo1.29

Liu, Zexiang; Ozay, Necmiye; Sontag, Eduardo
11:00-11:45 ThPo1.30

Particle Swarm Optimization for Training Quadrotor PID Controller, pp. 2013-2013.
Rodriguez, Eric; Dong, Wenjie; Lu, Qi
11:00-11:45 ThPo1.31

On Control-Sync Technique for Multi-Task System Operation*.
Fateh, Fariba; Mirafzal, Behrooz
11:00-11:45 ThPo1.32

Montufar, Sergio; Qian, William
11:00-11:45 ThPo1.33

McKee, Sasha M; Haddadin, Osama; Leang, Kam K.
11:00-11:45 ThPo1.34

Kumar, Alok; Umathe, Bhagyashree; Vaidya, Umesh; Kelkar, Atul
11:00-11:45 ThPo1.35

Self Organized Neural Network for Swarm Robots*.
Han, Zhifeng; Walton, Claire
11:00-11:45 ThPo1.36

M Anderson, Jacob; Leang, Kam K.
11:00-11:45 ThPo1.37

Distribution-Matching Deployment: A Stein
11:00-11:45 ThPo1.38

Real Application of Deep Reinforcement Learning for Multi-Agent Cooperation in Distributed Model-Based Predictive Control*.
Aponte Rengifo, Oscar Emilio; Francisco, Mario; Vega Cruz, Pastora
11:00-11:45 ThPo1.39

Avila, Ethan; Jaber, Halah; Frye, Michael
11:00-11:45 ThPo1.40

Urakawa, Yoshiyuki; Ngamlamai, Sirichai
11:00-11:45 ThPo1.41

Nguyen, Quang Huy; Sadki, Osama; Rafaralahy, Hugues; Haddad, Madjid; Zemouche, Ali
11:00-11:45 ThPo1.42

Closed-Loop Battery Manufacturing Process Control Via End-Of-Line Formation Features*.
Weng, Andrew; Less, Greg; Siegel, Jason B.; Stefanopoulou, Anna G.
11:00-11:45 ThPo1.43

Akundi, Sahithi Srijana; Liu, Yuanxing; Braniff, Austin; Dantas, Beatriz; Niknezhad, Shayan Sean; Tian, Yuhe; Khan, Faisal; Pistikopoulos, Efstratios N.
11:00-11:45 ThPo1.44

ThB01 Metro E/C
Agents-Based Systems I (Regular Session)
Chair: Rai, Ayush Purdue University
Co-Chair: Quijano, Universidad De Los Nicanor Andes
13:30-13:45 ThB01.1
Optimal Distribution of UAVs in Crop Spraying Considering Energy Consumption, pp. 2023-2028.
Archila Cruz, Oscar Fabian; Quijano, Nicanor; Martínez-Piazuelo, Juan

13:45-14:00 ThB01.2
Formation Shape Control with Minimal Global Rigidity, pp. 2029-2034.
Sahebsara, Farid; de Queiroz, Marcio
14:00-14:15 ThB01.3
Ding, Haochen; Xin, Ming
14:15-14:30 ThB01.4
Global Alignment for Multi-Agent Systems on SO(3) without Angular Velocity Measurements, pp. 2041-2046.
Boughellaba, Mouaad; Tayebi, Abdelhamid
14:30-14:45 ThB01.5
Distributed Algorithm for Edge Agreement Over Nonlinear Constraints, pp. 2047-2052.
Rai, Ayush; Mou, Shaoshuai
14:45-15:00 ThB01.6
Two-Player Task Negotiation Based on Trust, pp. 2053-2059.
Kim, Donghwa; Akella, Maruthi

ThB02
Optimization, Consensus, and Games I: Constraints and Distributed Computation (Invited Session)
Chair: Gil, Stephanie
Co-Chair: Akgun, Orhan Eren
Organizer: Akgun, Orhan Eren
Organizer: Nedich, Angelia
Organizer: Gil, Stephanie
Organizer: Dayi, Arif Kerem

13:30-13:45 ThB02.1
Contractivity of Distributed Optimization and Nash Seeking Dynamics (I), pp. 2060-2065.
Gokhale, Anand; Davydov, Alexander; Bullo, Francesco
13:45-14:00 ThB02.2
Distributed Conjugate Gradient Method Via Conjugate Direction Tracking (I), pp. 2066-2073.
Shorinwa, Ola; Schwager, Mac
14:00-14:15 ThB02.3
Parwana, Hardik; Wang, Ruiyang; Panagou, Dimitra
14:15-14:30 ThB02.4
Projected Push-Pull for Distributed Constrained Optimization Over Time-Varying Directed Graphs (I), pp. 2082-2089.
Akgun, Orhan Eren; Dayi, Arif Kerem; Gil, Stephanie; Nedich, Angelia
14:30-14:45 ThB02.5
Finite-Time Analysis of Asynchronous Multi-Agent TD Learning (I), pp. 2090-2097.
Dal Fabbro, Nicolet; Adibi, Arman; Mitra, Arun; Pappas, George J.
14:45-15:00 ThB02.6
Decentralized and Equitable Optimal Transport (I), pp. 2098-2103.
Lau, Ivan; Ma, Shiqian; Uribe, Cesar A.

ThB03
Mechatronics I (Invited Session)
Chair: Shan, Jinjun
Co-Chair: Al Janaideh, Mohammad
Organizer: Al Janaideh, Mohammad
Organizer: ENIT Tarbes, INPT, Rakotondrabe, Micky

13:30-13:45 ThB03.1
Particle Filtering on Lie Group for Mobile Robot Localization with Range-Bearing Measurements (I), pp. 2104-2109.
Zhang, Shuo; Shan, Jinjun; Liu, Yibo

ThB04
Harbour
Optimization, Consensus, and Games II: Distributed Optimization and Games (Invited Session)
Chair: Melo, Diego
Co-Chair: Moon, Jinwook
Organizer: Melo, Diego
Organizer: Moon, Jinwook

13:45-14:00 ThB04.1
Distributed Optimization and Games (II), pp. 2110-2115.

Frontenac
Mechatronics II (Invited Session)
Chair: Miao, Song
Co-Chair: Sun, Jie
Organizer: Miao, Song
Organizer: Sun, Jie

13:45-14:00 ThB04.2
Distributed Optimization and Games (II), pp. 2116-2121.

109
13:45-14:00 ThB03.2
Retaining Physical Understanding through Discretization (I), pp. 2110-2115.
Abromovitch, Daniel Y.

14:00-14:15 ThB03.3
A Control Lyapunov Function-Based Approach for Particle Nanomanipulation Via Optical Tweezers (I), pp. 2116-2121.
Golgoon, Melika; Mohammadi, Alireza; Spong, Mark W.

14:15-14:30 ThB03.4
Gomaa, Mahmoud A. K.; De Silva, Oscar; Jayasiri, Awantha; Mann, George K. I.

14:30-14:45 ThB03.5
Preliminary Results on Generalized Transmissibility Operators (I), pp. 2128-2133.
Aljanaideh, Khaled; Al Janaideh, Mohammad

14:45-15:00 ThB03.6
Decoupling and Tracking Control for Offshore Crane System Effect by Unknown Roll/Heave Wave Motions Disturbances (I), pp. 2134-2139.
Al Saaideh, Mohammad; Al-Solihat, Mohammed Khair; Al-Rawashdeh, Yazen Mohammad; Aljanaideh, Khaled; Al Janaideh, Mohammad

ThB04
Estimation and Identification III (Regular Session)
Chair: Lahijanian, University of Colorado Boulder
Co-Chair: Hinson, The Boeing Company Kimber

13:30-13:45 ThB04.1
Skovbekk, John; Laurenti, Luca; Frew, Eric W.; Lahijanian, Morteza

13:45-14:00 ThB04.2
A Flexible Wing Model Uncertainty

14:00-14:15 ThB04.3
Adaptive Pre-Processing Linear Output Regulation with Non-Vanishing Measurements, pp. 2152-2157.
Han, Qi; Wang, Lei; Marconi, Lorenzo; Liu, Zhito; Su, Hongye

14:15-14:30 ThB04.4
Köhler, Andreas; Zhang, Ping

14:30-14:45 ThB04.5
Using Databases to Implement Algorithms: Estimation of Allan Variance Using B+ Tree Data Structure, pp. 2164-2169.
Maddipatla, Srivenkata Satya Prasad; Pakala, Riniith; Haeri, Hossein; Chen, Cindy; Jerath, Kshitij; Brennan, Sean

14:45-15:00 ThB04.6
Multiple Model Optimization-Based Estimators Using Horizon Scenario Tree (I), pp. 2170-2175.
Elsayed, Mahmoud N.; De Silva, Oscar; Jayasiri, Awantha; Mann, George K. I.; Gosine, Raymond G.

ThB05
Optimization III (Regular Session)
Chair: Yousefian, Rutgers University Farzad
Co-Chair: Dai, Ran Purdue University

13:30-13:45 ThB05.1
Adaptive Low-Rank Tensor Approximation Based on Mixed-Integer Representations, pp. 2176-2181.
Xu, Zhi; Chaoying, Pei; Dai, Ran

13:45-14:00 ThB05.2
Distributed Gradient Tracking Methods with Guarantees for Computing a Solution to Stochastic MPECs, pp. 2182-2187.
Ebrahimi, Mohammadjavad; Shanbhag, Uday V.; Yousefian, Farzad

14:00-14:15 ThB05.3
Mutual Learning in Optimization - Part II, pp.
2188-2193.
Narendra, Kumpati S.; Zheng, Lihao; Mukhopadhyay, Snehasis

14:15-14:30 ThB05.4
Rostami, Mohammadreza; Moradian, Hossein; Kia, Solmaz S.

14:30-14:45 ThB05.5
Efficient Computation of Weapon-Target Assignments Using Abstraction, pp. 2200-2205.
Elliott, D. Sawyer; Vatsan, Maansi

14:45-15:00 ThB05.6
Samadi, Sepideh; Burbano Lombana, Daniel; Yousefian, Farzad

ThB06 Queens Quay 1
Modeling and Control of Energy Storage and Conversion Systems (Invited Session)
Chair: Zhang, Dong
University of Oklahoma
Co-Chair: Fogelquist, Jackson
University of California, Davis
Organizer: Zhiyou, Michigan, Ann Arbor
Michigan, University of
Fogelquist, Jackson
California, Davis

13:30-13:45 ThB06.1
Data-Driven Koopman Model of an Integrated HVAC and Battery Cooling System in Electric Vehicles (I), pp. 2212-2217.
Chen, Youyi; Kwak, Kyoung Hyun; Jung, Dohoy; Kim, Youngki

13:45-14:00 ThB06.2
Hypergraph-Based Unified Model Development for Active Battery Equalization Systems (I), pp. 2218-2223.
Ouyang, Quan; Ghaeminezhad, Nourallah; Li, Yang; Wik, Torsten; Zou, Changfu

14:00-14:15 ThB06.3
Espin, Jorge Esteban; Zhang, Dong; Toti, Daniele; Pozzi, Andrea

14:15-14:30 ThB06.4
Data-Driven Model Predictive Control of Battery Storage Units, pp. 2230-2235.
Lipka, Johannes Bernd; Hans, Christian Andreas

14:30-14:45 ThB06.5
Ghosh, Sanchita; Roy, Tanushree

14:45-15:00 ThB06.6
Chen, Yunzhi; Hill, Daniel; Billings, Blake; Hedengren, John; Powell, Kody

ThB07 Queens Quay 2
Traffic Control II (Regular Session)
Chair: Vehlhaber, Finn Niklas
Eindhoven University Technology
Co-Chair: Malikopoulos, Andreas A.
Cornell University
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>ThB07.1</td>
<td>Alpha-Fair Routing in Urban Air Mobility with Risk-Aware Constraints</td>
<td>Yu, Yue; Gao, Zhenyu; Li, Hui Qing; Wei, Qinhuang; Clarke, John-Paul; Topcu, Ufuk</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>ThB07.2</td>
<td>Potential-Based Controller for Efficient Flow of Connected and Automated Vehicles</td>
<td>Tzortzoglou, Filippou; Theodosios, Dionysios; Dave, Aditya Deepak; Malikopoulos, Andreas A.</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB08.1</td>
<td>Process Control Evolution and Challenges in Nuclear Power Plants</td>
<td>Chair: Yu, Kevin; Co-Chair: Knutson, Mark; Organizer: Yu, Kevin</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>ThB08.2</td>
<td>Load-Following Control of Nuclear Power Plants in the Age of Small Modular Reactors</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB09.1</td>
<td>Guaranteed Safe Satellite Guidance and Navigation Using Reachability Based Switching Controllers</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>ThB09.2</td>
<td>Multi-Thread Learning and Adaptation for Spacecraft Attitude Control</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>ThB09.3</td>
<td>Blameless and Optimal Control under Prioritized Safety Constraints</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>ThB09.4</td>
<td>Chance-Constrained Control for Safe Spacecraft Autonomy: Convex Programming Approach</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThB09.5</td>
<td>An Error Estimation and Mesh Refinement</td>
<td>Chair: Petersen, Chris; Co-Chair: Soderlund, Alexander; Organizer: Phillips, Sean</td>
</tr>
</tbody>
</table>
Method Applied to Optimal Libration Point Orbit Transfers (I), pp. 2325-2330.
Haman, George III Victor; Rao, Anil V.

14:45-15:00 ThB09.6

Shielded Deep Reinforcement Learning for Complex Spacecraft Tasking (I), pp. 2331-2337.
Reed, Robert; Schaub, Hanspeter; Lahijanian, Morteza

ThB10 Dockside 2
Adaptive Control II (Regular Session)
Chair: Westwick, David
Schulich School of Engineering, University of Calgary
Co-Chair: Kamalapurkar, Rushikesh
Oklahoma State University

13:30-13:45 ThB10.1
Doctolero, Samuel; Westwick, David

13:45-14:00 ThB10.2
Retrospective Cost-Based Extremum Seeking Control with Vanishing Perturbation for Online Output Minimization, pp. 2344-2349.
Paredes Salazar, Juan Augusto; Portella Delgado, Jhon Manuel; Bernstein, Dennis S.; Goel, Ankit

14:00-14:15 ThB10.3
Adaptive Output-Feedback Model Predictive Control of Hammerstein Systems with Unknown Linear Dynamics, pp. 2350-2355.
Kamaldar, Mohammadreza; Bernstein, Dennis S.

14:15-14:30 ThB10.4
Ogrl, Tochukwu Elijah; Qureshi, Muzaffar; Bell, Zachary I.; Waters, Kristy; Lahijanian, Morteza

14:30-14:45 ThB10.5
Lopez, Brett; Slotine, Jean-Jacques

14:45-15:00 ThB10.6
Hybrid Motion Planning and Formation Control of Multi-AUV Systems Based on DRL, pp. 2368-2373.
Hadi, Behnaz; Khosravi, Alireza; Sarhadi, Pouya

ThB11 Dockside 3
Autonomous Systems I (Regular Session)
Chair: Muradore, Riccardo
University of Verona
Co-Chair: Paternain, Santiago
Rensselaer Polytechnic Institute

13:30-13:45 ThB11.1
Distributed Safe Stabilization Control for Interconnected Time-Delay Systems, pp. 2374-2379.
Pan, Zhuo-Rui; Ren, Wei; Sun, Xi-Ming

13:45-14:00 ThB11.2
Interval Signal Temporal Logic from Natural Inclusion Functions, pp. 2380-2385.
Baird, Luke; Harapanahalli, Akash; Coogan, Samuel

14:00-14:15 ThB11.3
Allocation of Control Authority between Dynamic Inversion and Reinforcement Learning for Autonomous Helicopter Aerial Refueling, pp. 2386-2392.
Jayarathne, Damsara; Paternain, Santiago; Mishra, Sandipan

14:15-14:30 ThB11.4
A Twin-Delayed Deep Deterministic Policy Gradient Approach for UAV Formation Control, pp. 2393-2398.
Zhang, Yintao; Zhang, Youmin; Yu, Ziquan; Li, Jin; Qin, Qiaomeng; Gao, Chenxi

14:30-14:45 ThB11.5
Towards Aircraft Autonomy Using a POMDP-Based Planner, pp. 2399-2404.
Trotti, Francesco; Farinelli, Alessandro; Muradore, Riccardo

14:45-15:00 ThB11.6
A Submodular Approach to Controlled Islanding for Multi-Agent Network Stability, pp. 2405-2411.
Cheng, Shiyu; Clark, Andrew

ThB12

Dockside 9

Predictive Control for Linear Systems I

(Regular Session)

Chair: Liu, Jinfeng
University of Alberta

Co-Chair: Yong, Sze Zheng
Northeastern University

13:30-13:45 ThB12.1

Control Barrier Functions for Linear Continuous-Time Input-Delay Systems with Limited-Horizon Previewable Disturbances, pp. 2412-2419.

Pati, Tarun; Hwang, Seunghoon; Yong, Sze Zheng

13:45-14:00 ThB12.2

Distributed Source Seeking for a Periodic Signal Using an Improved Gaussian Process-Based Model Predictive Control, pp. 2420-2425.

Gao, Xinzhou; Shu, Zhan

14:00-14:15 ThB12.3

Homothetic Tube Model Predictive Control with Multi-Step Predictors, pp. 2426-2431.

Saccani, Danilo; Ferrari-Trecate, Giancarlo; Zeilinger, Melanie N.; Köhler, Johannes

14:15-14:30 ThB12.4

Kim, Junsoo; Park, Gyunghoon

14:30-14:45 ThB12.5

Time Robust Model Predictive Control for Heterogeneous Multi-Agent Systems under Global Temporal Logic Tasks, pp. 2440-2445.

Yang, Tiange; Zou, Yuanyuan; Liu, Jinfeng; Jia, Tianyu; Li, Shaoyuan

14:45-15:00 ThB12.6

Gracia, Victor; Krupa, Pablo; Alamo, Teodoro; Limon, Daniel

ThB13

Richmond

Constrained Control III (Regular Session)

Chair: Namerikawa, Toru
Keio University

Co-Chair: Bakolas, Efstathios
The University of Texas at Austin

13:30-13:45 ThB13.1

A Performance-Based Model Recovery Anti-Windup Design for Linear Systems Subject to Actuator Saturation, pp. 2452-2457.

Lai, Wexin; Li, Yuanlong; Lin, Zongli

13:45-14:00 ThB13.2

On the Equivalence between Prescribed Performance Control and Control Barrier Functions, pp. 2458-2463.

Namerikawa, Ryo; Wiltz, Adrian; Mehdifar, Farhad; Namerikawa, Toru; Dimarogonas, Dimos V.

14:00-14:15 ThB13.3

Global Finite Time Stabilization of SISO Hurwitz Linear Systems Subject to Actuator Saturation: The Case of Real Eigenvalues, pp. 2464-2469.

Hou, Tan; Li, Yuanlong; Lin, Zongli

14:15-14:30 ThB13.4

Disturbance Observer-Based Robust Integral Control Barrier Functions for Nonlinear Systems with High Relative Degree, pp. 2470-2475.

Zinage, Vrushabh; Chandra, Rohan; Bakolas, Efstathios

14:30-14:45 ThB13.5

Constrained Synchronization of Drive and Response Chaotic Systems with Parametric Uncertainty Using Barrier Lyapunov Function, pp. 2476-2481.

Singh, Shubham; Jain, Anoop

ThB14

Wellington

Set-Based Methods in Dynamic Systems and Control (Invited Session)

Chair: Coogan, Samuel
Georgia Institute of Technology

Co-Chair: Pangborn, Herschel
The Pennsylvania State University

Organizer: Koeln, University of Texas at Austin

14:45-15:00 ThB14.1

Gracia, Victor; Krupa, Pablo; Alamo, Teodoro; Limon, Daniel
Justin Dallas Organizer: Pangborn, Herschel The Pennsylvania State University Organizer: Jain, Neera Purdue University Organizer: Ruths, Justin University of Texas at Dallas Organizer: Bird, Trevor J. PC Krause and Associates Organizer: Siefert, Jacob Pennsylvania State University

13:30-13:45 ThB14.1

Opportunistic Safety Outside the Maximal Controlled Invariant Set (I), pp. 2482-2487.
Liu, Zexiang; Chen, Hao; Gao, Yulong; Ozay, Necmiye

13:45-14:00 ThB14.2

Robust Model Predictive Control with Temporally-Uncertain Disturbance Preview Information (I), pp. 2488-2493.
Gostin, David; Koeln, Justin

14:00-14:15 ThB14.3

Smith, Reid; Hencey, Brandon; Parry, Adam; Alleyne, Andrew G.

14:15-14:30 ThB14.4

Efficient and Guaranteed Hamilton-Jacobi Reachability Via Self-Contained Subsystem Decomposition and Admissible Control Sets (I), pp. 2501-2506.
He, Chong; Gong, Zheng; Chen, Mo; Herbert, Sylvia

14:30-14:45 ThB14.5

Forward Invariance in Neural Network Controlled Systems (I), pp. 2507-2512.
Harapanahalli, Akash; Jafarpour, Saber; Coogan, Samuel

14:45-15:00 ThB14.6

ZonoLAB: A MATLAB Toolbox for Set-Based Control Systems Analysis Using Hybrid Zonotopes (I), pp. 2513-2520.
Koeln, Justin; Bird, Trevor J.; Siefert, Jacob; Ruths, Justin; Pangborn, Herschel; Jain, Neera

ThB15 Yonge Estimation and Control of Distributed Parameter Systems III (Invited Session)
Chair: Hu, Weiwei University of Georgia
Co-Chair: Demetriou, Michael A. Worcester Polytechnic Institute
Organizer: Hu, Weiwei University of Georgia

13:30-13:45 ThB15.1

Corbin, Nicholas; Kramer, Boris

13:45-14:00 ThB15.2

Adaptive Observer Design for a Multi-State Reparable System (I), pp. 2527-2532.
Hu, Weiwei; Demetriou, Michael A.

14:00-14:15 ThB15.3

Safe Control of Hyperbolic PDE-ODE Cascades (I), pp. 2533-2538.
Wang, Ji; Krstic, Miroslav

14:15-14:30 ThB15.4

Spaces of Exact Boundary Controllability of a Schrodinger Equation with an Internal Point Mass (I), pp. 2539-2544.
Hansen, Scott

14:30-14:45 ThB15.5

Safety Factor Profile Regulation Via Self-Triggered Model Predictive Control in the EAST Tokamak (I), pp. 2545-2550.
Wang, Zibo; Paruchuri, Sai Tej; Yang, Lixing; Schuster, Eugenio

ThB16 Dockside 4 Control Co-Design for Energy Systems (Invited Session)
Chair: Russell, Kayla University of Illinois at Urbana-Champaign
Co-Chair: Sharma, Himanshu Pacific Northwest National Laboratory
Organizer: Vermillion, Christopher University of Michigan
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:45-14:00</td>
<td>ThB16.2</td>
<td>Control Co-Design of a Ducted Hydrokinetic Turbine (I), pp. 2558-2563.</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB16.3</td>
<td>A Set-Based Approach for Robust Control Co-Design (I), pp. 2564-2571.</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>ThB16.4</td>
<td>Site-Dependent Solutions of Wave Energy Converter Farms with Surrogate Models, Control Co-Design, and Layout Optimization (I), pp. 2572-2579.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB16.5</td>
<td>Multi-Objective Control Co-Design Using Graph Based Optimization for Offshore Wind Farm Grid Integration (I), pp. 2580-2585.</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>ThB16.6</td>
<td>Strongly Stabilizing LQR Output Feedback Designs Via Parametric and Non-Parametric Procedures, pp. 2618-2623.</td>
</tr>
</tbody>
</table>

ThB17

Distributed Control II (Regular Session)

Chair: Cichella, Venanzio

Co-Chair: Jensen, Emily

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:45-14:00</td>
<td>ThB17.2</td>
<td>A Convex Parameterization of Controllers Constrained to Use Only Relative Measurements, pp. 2592-2597.</td>
</tr>
</tbody>
</table>

ThB18

Stability of Nonlinear Systems II (Regular Session)

Chair: Lee, Donghwan

Co-Chair: Chen, Chih-Chiang

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB18.3</td>
<td>LMI Design Procedure for Incremental Input/Output-To-State Stability in Nonlinear Systems, pp. 2636-2641.</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>ThB18.4</td>
<td>Bounded Output Feedback Control of Planar Systems with Unknown Nonlinear Structures and Application to Output Consensus, pp. 2642-2647.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB18.5</td>
<td>Global Uniform Ultimate Boundedness of Semi-Passive Systems Interconnected Over Directed Graphs, pp. 2648-2653.</td>
</tr>
</tbody>
</table>

ThB19

Uncertain Systems I (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:45-14:00</td>
<td>ThB19.2</td>
<td>Output Feedback Position Tracking Control of Marine Vessels Subject to Periodic Disturbances, pp. 2660-2665.</td>
<td>Kurtoglu, Deniz; Tatlicioglu, Enver; Zergeroglu, Erkan</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB19.3</td>
<td>Command Governor Mechanism for Uncertain Multi-Agent Systems with Actuator Dynamics, pp. 2666-2671.</td>
<td>Kurttisi, Atahan; Dogan, Kadriye; Sarioglu, N. Eren; Deniz, Meryem</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>ThB19.4</td>
<td>Multimodal Safe Control for Human-Robot Interaction, pp. 2672-2678.</td>
<td>Pandya, Ravi; Wei, Tianhao; Liu, Changliu</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB19.5</td>
<td>Exact Computation of LTI Reach Set from Integrator Reach Set with Bounded Input, pp. 2679-2684.</td>
<td>Haddad, Shadi; Khodary, Pansie; Halder, Abhishek</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>ThB19.6</td>
<td>Optimal Capture Strategy Design Based on Reinforcement Learning in the Pursuit-Evasion Game with Unknown Dynamics, pp. 2685-2690.</td>
<td>Jia, Yupeng; Dong, Yi</td>
</tr>
</tbody>
</table>

ThB20

Sensors and Sensing Systems (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:45-14:00</td>
<td>ThB20.2</td>
<td>Sequential Sensor Fusion for Slip Estimation in Mobile Robots, pp. 2697-2702.</td>
<td>Zarei-Jalalabadi, Mahboubeh; Chhabra, Robin</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB20.3</td>
<td>Average Consensus with Error Correction, pp. 2703-2708.</td>
<td>Benalcazar, Diego R.; Magnussson, Sindri; Enyioha, Chinwendu</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>ThB20.4</td>
<td>Matrix Concentration Inequalities for Sensor Selection, pp. 2709-2714.</td>
<td>Calle, Christopher I.; Bopardikar, Shaunak D.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB20.5</td>
<td>A Low Rank Approach to Minimize Sensor-To-Actuator Communication in Finite Horizon Output Feedback, pp. 2715-2720.</td>
<td>Aspeel, Antoine; Nylof, Jakob; Li, Jing</td>
</tr>
</tbody>
</table>
ThB21

Reduced-Order Modeling and Numerical Algorithms (Regular Session)

Chair: Goel, Ankit
University of Maryland Baltimore County

Co-Chair: Portella Delgado, Jhon Manuel
University of Maryland Baltimore County

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30-13:45</td>
<td>ThB21.1</td>
<td>Multi-Timescale System Separation Via Data-Driven Identification within a Singular Perturbation Framework, pp. 2721-2727.</td>
<td>Park, Seho; Pangborn, Herschel</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>ThB21.2</td>
<td>Efficient Local Validation of Partially Ordered Models Via Bayesian Directed Sampling, pp. 2728-2733.</td>
<td>Kellan, Moore; Murray, Richard M.</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>ThB21.3</td>
<td>Metropolis-Adjusted Langevin Algorithm with SPSA-Approximated Gradients, pp. 2734-2739.</td>
<td>Sun, Shiqing; Spall, James C.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>ThB21.5</td>
<td>Computing Invariant Zeros of a Linear System Using State-Space Realization, pp. 2746-2751.</td>
<td>Portella Delgado, Jhon Manuel; Goel, Ankit</td>
</tr>
</tbody>
</table>

ThC01

Agents-Based Systems II (Regular Session)

Chair: Cenedese, Angelo
University of Padova

Co-Chair: Simaan, Marwan A.
University of Central Florida

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>ThC01.1</td>
<td>An Active-Sensing Approach for Bearing-Based Target Localization, pp. 2752-2757.</td>
<td>Shuan, Beniamino; Michieletto, Giulia; Mesbahi, Mehran; Cenedese, Angelo</td>
</tr>
</tbody>
</table>

ThC02

Harbour Optimization, Consensus, and Games II: Networked Agents (Invited Session)

Chair: Gil, Stephanie
Harvard University

Co-Chair: Akgun, Orhan Eren
Harvard University

Organizer: Akgun, Orhan Eren
Harvard University

Organizer: Nedich, Angelia
Arizona State University

Organizer: Gil, Stephanie
Harvard University

Organizer: Dayi, Arif Kerem
Harvard University

Nguyen, Duong; Bianchi, Mattia; Dörfler, Florian; Nguyen, Duong; Nedich, Angelia

Estimating True Beliefs from Declared Opinions (I), pp. 2796-2801.

Tang, Jennifer; Adler, Aviv; Ajorlou, Amir; Jadbabaie, Ali

Riess, Hans; Henselman-Petrusek, Gregory; Munger, Michael; Ghrist, Robert; Bell, Zachary; Zavlanos, Michael M.

Heterogeneous Distributed Subgradient (I), pp. 2809-2815.

Lin, Yixuan; Gamarra, Marco; Liu, Ji

Distributed Optimization-Based State Estimation of Nonlinear Dynamical Systems (I), pp. 2816-2821.

Wang, Lili; Sundaram, Shreyas; LeGrand, Keith

The Role of Confidence for Trust-Based Resilient Consensus, pp. 2822-2829.

Ballotta, Luca; Yemini, Michal

Multi-Domain Walking with Reduced-Order Models of Locomotion, pp. 2830-2837.

Quadrupedal Locomotion Control on Inclined Surfaces Using Collocation Method, pp. 2838-2843.

Salagame, Adarsh; Gianello, Maria Victoria; Wang, Chenghao; Venkatesh Krishnamurthy, Kaushik; Pitroda, Shreyansh; Rajput, Rohit Hiramani; Sihite, Eric; Leeser, Miriam; Ramezani, Alireza

Adaptive Maneuvering Control for Planar Snake Robots in Uncertain Friction Environments, pp. 2844-2850.

Chitikena, Hareesh; Gravdahl, Irja; Pettersen, Kristin Y.; Mohammadi, Alireza; Sanfilippo, Filippo; Stavdahl, Øyvind; Ma, Shu-Gen

Nonlinear Motion Control of a Multirotor Slung Load System: Experimental Results, pp. 2851-2857.

Jiang, Zifei; Yu, Yanwen; Lynch, Alan Francis

Comparative Analysis of Multiple Deep Reinforcement Learning Approaches for Collision-Free Path-Planning of a 3-DoF-Robot, pp. 2858-2864.

Weishaupt, Sven; Husmann, Ricus; Aschemann, Harald; Schlenther, Nils; Oehlschlægel, Thimo; Steinbrecher, Christian

RL-PGO: Reinforcement Learning-Based Planar Pose-Graph Optimization, pp. 2865-2870.

Kourtzanidis, Nikolaos; Saeedi, Sajad
Operators in Native Spaces, pp. 2871-2878.
Powell, Nathan; Paruchuri, Sai Tej; Niu, Shengyuan; Bouland, Ali; Kurdila, Andrew J.

15:45-16:00 ThC04.2
Sparse Identification of Nonlinear Dynamics with Side Information (SINDy-SI), pp. 2879-2884.
Machado, Gabriel Freitas; Jones, Morgan

16:00-16:15 ThC04.3
Basaj, Sujata; Ting, Jonathan; Mishra, Kislaya; Allen, Brendon C.

16:15-16:30 ThC04.4
Output-Only Identification of Lur'e Systems with Hysteretic Feedback Nonlinearities, pp. 2891-2896.
Richards, Riley J.; Yang, Yulong; Paredes Salazar, Juan Augusto; Bernstein, Dennis S.

16:30-16:45 ThC04.5
Stamouli, Charis; Chatzipantazis, Evangelos; Pappas, George J.

16:45-17:00 ThC04.6
Iterative ESO-Based Data-Driven Active Disturbance Rejection Learning Control of Czochralski Silicon Single Crystal Growth Process, pp. 2905-2910.
Ren, Junchao; Liu, Ding; Wan, Yin; Shi, Shuyuan; Liu, Yuyu

15:45-16:00 ThC05.2
Alborghetti, Mattia; Montecchio, Giulio; Sabug, Lorenzo Jr.; Fagiano, Lorenzo; Ruiz, Freddy

16:00-16:15 ThC05.3
Online Regulation of Dynamical Systems to Solutions of Constrained Optimization Problems, pp. 2924-2929.
Chen, Yiting; Cothren, Liliaokeawawa; Cortes, Jorge; Dall'Anese, Emiliano

16:15-16:30 ThC05.4
Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization, pp. 2930-2935.
Ma, Xutao; Ning, Chao

16:30-16:45 ThC05.5
Perfect Tracking of Time-Varying Optimum by Extremum Seeking, pp. 2936-2943.
Yilmaz, Cemal Tugrul; Diagne, Mamadou; Krsti, Miroslav

Power Systems and Electronics (Regular Session)
ThC06
Chair: Sira-Ramirez, Hebertt
Co-Chair: Norman, Kevin, Texas Tech University

15:30-15:45 ThC06.1
Control of Parallel Solar-Battery Systems Enabled by a Theta-Converter Topology, pp. 2944-2949.
Norman, Kevin; Ren, Beibei; Zhong, Qing-Chang

15:45-16:00 ThC06.2
ESO-Based Resonant Internal Model Molding Scheme with Application to Current Control of LCL-Type Grid-Tied Inverters, pp. 2950-2957.
Bao, Zhengyang; Ye, Yongqiang; Xiong, Yongkang; Zhao, Qiangsong

16:00-16:15 ThC06.3
Control Designs for Critical-Contingency
Responsible Grid-Following Inverters and Seamless Transitions to and from Grid-Forming Modes, pp. 2958-2963.

Park, Jaesang; Askarian, Ali; Salapaka, Srinivasa M.

16:15-16:30 ThC06.4

The Role of Solar Market Mechanisms in Distributed Panel Investment, pp. 2964-2970.

Davoudi, Mehdi; Qin, Junjie; Lin, Xiaojun

16:30-16:45 ThC06.5

Sliding Mode Control of Switched Hamiltonian Systems, pp. 2971-2976.

Sira-Ramirez, Hebertt; Gómez-León, Brian Camilo; Aguilar-Orduña, Mario Andrés

16:45-17:00 ThC06.6

Gómez-León, Brian Camilo; Aguilar-Orduña, Mario Andrés; Sira-Ramirez, Hebertt; Garrido-Moctezuma, Ruben

ThC07 Queens Quay 2

Control Solutions for Enhancing the Efficiency and Adoption of Electric Vehicles (Invited Session)

Chair: Nazari, Shima
Co-Chair: Kwak, Kyung Hyun
Organizer: Rajakumar Deshpande, Shreshtta
Organizer: Kim, Youngki
Organizer: Gupta, Shobhit
Organizer: Nazari, Shima
UC Davis
University of Michigan - Dearborn
Southwest Research Institute
University of Michigan - Dearborn
General Motors
UC Davis

15:30-15:45 ThC07.1

Parametric Modeling for Personalized Braking of Electric Vehicles in Full-Stop Scenarios (I), pp. 2983-2988.

Kwak, Kyung Hyun; Kim, Youngki; Holmer, Justin; Kim, Heeseong; Chen, Yue-Ming Chen; Lee, Hyeonjik; Link, Brian

15:45-16:00 ThC07.2

Shiledar, Ankur; Gupta, Shobhit; Spano, Matteo; Villani, Manfredi; Canova, Marcello; Rizzoni, Giorgio

16:00-16:15 ThC07.3

Joint Optimization of Charging Infrastructure Placement and Operational Schedules for a Fleet of Battery Electric Trucks (I), pp. 2995-3000.

Bertucci, Juan Pablo; Hofman, Theo; Salazar, Mauro

16:15-16:30 ThC07.4

A Driver-Centric Long-Trip Schedule Optimizer for Battery Electric Vehicles (I), pp. 3001-3006.

Su, Zifei; Chen, Pingen

16:30-16:45 ThC07.5

Location-Routing Problem for Electric Delivery Vehicles with Mobile Charging Trailers (I), pp. 3007-3012.

Innis, Cody; Chen, Pingen

ThC08 Bay

Process Control (Regular Session)

Chair: Koch, Charles Robert
Co-Chair: Singh, Ravendra

15:30-15:45 ThC08.1

Energy Scheduling and Control of Grid-Interactive Communities with Physically Consistent Deep Learning, pp. 3013-3018.

Xiao, Tianqi; You, Fengqi

15:45-16:00 ThC08.2

Linear Model Predictive Control for Two-Dimensional Transport-Reaction Processes, pp. 3019-3024.

Akbarnezhad, Mahdis; Ozorio Cassol, Guilherme; Koch, Charles Robert; Dubljevic, Stevan

16:00-16:15 ThC08.3
Data-Driven Economic Predictive Control of Wastewater Treatment Process with Input-Output Koopman Operator, pp. 3025-3030.
Han, Minghao; Yao, Jingshi; Adrian Wing-Keung, Law; Yin, Xunyuan

Simulation-Based Approach for Optimal Control of a Stefan Problem, pp. 3031-3036.
Srisuma, Prakitr; Barbastathis, George; Braatz, Richard D.

Experimental Validation of a Fractional Order Autotuner for a Two Rotor Aerodynamical System, pp. 3037-3042.
Muresan, Cristina-Ioana; Mihai, Marcian; Hegedus, Erwin; Kozma, Elisabeta; Birș, Isabela

Gajjar, Aatam; El-Farra, Nael H.

ThC09 Dockside 1
Multi-Agent Spacecraft Control (Invited Session)
Chair: Phillips, Sean
Air Force Research Laboratory
Co-Chair: Soderlund, Alexander
The Ohio State University
Organizer: Petersen, Chris
University of Florida
Organizer: Soderlund, Alexander
The Ohio State University
Organizer: Phillips, Sean
Air Force Research Laboratory

15:30-15:45 ThC09.1
Rigid Body Attitude Cluster Consensus Control on Weighted Cooperative-Competitive Networks (I), pp. 3049-3054.
Butcher, Eric; Maadani, Mohammad

15:45-16:00 ThC09.2
Mehlman, Cameron; Falco, Gregory

16:00-16:15 ThC09.3
Distributed Nonlinear Filtering Using Triangular Transport Maps (I), pp. 3062-3067.
Gange, Daniel; Baptista, Ricardo; Taghvaei, Amirhossein; Tannenbaum, Allen; Phillips, Sean

16:15-16:30 ThC09.4
Solar-Drag Spacecraft Formation Control with Particle Swarm Optimization-Based Guardian Maps, pp. 3068-3073.
Chihabi, Yazan; Ulrich, Steve

16:30-16:45 ThC09.5
Time Shift Governor for Constrained Control of Spacecraft Orbit and Attitude Relative Motion in Bicircular Restricted Four-Body Problem, pp. 3074-3080.
Kim, Taehyeun; Kolmanovsky, Ilya V.; Girard, Anouck

16:45-17:00 ThC09.6
Gibart, Jules; Piet-Lahanier, Helene; Farago, Francois

ThC10 Dockside 2
Adaptive Control III (Regular Session)
Chair: L'Afflitto, Andrea
Virginia Tech
Co-Chair: Garcia, Rodolfo
New Mexico State University

15:30-15:45 ThC10.1
Li, Zhiwen; Lai, Beixian; Li, Weibing; Zhang, Jun; Pan, Yongping

15:45-16:00 ThC10.2
A Dual-Loop Sliding-Mode Scheme for Uncertain Nonlinear Systems, pp. 3094-3099.
Zhong, Hongli; Zhong, Zhixiong; Huan, Zhijie; Lam, Hak-Keung
Real-Time Implementation of a Spiking Neural Network-Based Control: An Application for the Ball and Plate System, pp. 3100-3105.
Chavez Arana, Diego; Garcia Alcantara, Omar Alejandro; Rubio Scola, Ignacio; Espinoza Quesada, Eduardo Steed; Garcia Carrillo, Luis Rodolfo; Sornborger, Andrew T.

A Note on the Estimation of Von Neumann and Relative Entropy Via Quantum State Observers, pp. 3106-3111.
Balas, Mark; Griffith, Tristan; Gehlot, Vinod

Wang, Haoran; Scurlock, Brian; Powell, Nathan; L'Afflitto, Andrea; Kurdila, Andrew J.

Adaptive Real-Time Numerical Differentiation with Variable-Rate Forgetting and Exponential Resetting, pp. 3118-3123.
Verma, Shashank; Lai, Brian; Bernstein, Dennis S.

Contingency Model Predictive Control for Bipedal Locomotion on Moving Surfaces with a Linear Inverted Pendulum Model, pp. 3166-3171.
Chen, Kuo; Huang, Xinyan; Chen, Xunjie; Yi, Jingang

Contingency Model Predictive Control for Bipedal Locomotion on Moving Surfaces with a Linear Inverted Pendulum Model, pp. 3166-3171.
Chen, Kuo; Huang, Xinyan; Chen, Xunjie; Yi, Jingang

MPC Based Linear Equivalence with Control Barrier Functions for VTOL-UAVs, pp. 3172-3177.
Ali, Ali Mohamed; Hashim, Hashim A; Shen, Chao

Thorpe, Adam; Neary, Cyrus; Djeumou, Franck; Oishi, Meeko; Topcu, Ufuk

A V2V Approach to Assured Aircraft Emergency Road Landings, pp. 3138-3145.
Tekaslan, Huseyin Emre; Atkins, Ella M.

Distributed Event-Triggered Consensus of Uncertain Multi-Agent Systems under a Directed Graph, pp. 3146-3151.
Yang, Yanhua; Mei, Jie; Ma, Guangfu

Haraldsen, Aurora; Wiig, Martin Syre; Ames, Aaron D.; Pettersen, Kristin Y.

Cluster Consensus of the Matrix-Weighted Network on a Negative Circle, pp. 3160-3165.
Wang, Chongzhi; Shao, Haibin; Li, Dewei
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:15-16:30</td>
<td>ThC12.4</td>
<td>Data-Driven Min-Max MPC for Linear Systems</td>
<td>Wang, Yibo; Qiu, Yiwen; Sader, Malika; Huang, Dexian; Shang, Chao</td>
<td>3184-3189.</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>ThC12.5</td>
<td>Analytical Reference Compensation for Tracking Dynamic Target Signals with Linear Robust MPC Strategies</td>
<td>Xie, Yifan; Berberich, Julian; Allgöwer, Frank</td>
<td></td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>ThC12.6</td>
<td>An Encrypted Model Predictive Control Strategy for Resilience Operations</td>
<td>Santos, Tito Luís Maia; Pereira, Bruno</td>
<td>3196-3201.</td>
</tr>
</tbody>
</table>

ThC13 Richmond

Advanced Methods in Control (Regular Session)

Chair: Kawano, Yu Hiroshima University
Co-Chair: Broucke, Mireille E. Univ. of Toronto

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:45-16:00</td>
<td>ThC13.2</td>
<td>Polynomial Lyapunov Functions and Invariant Sets from a New Hierarchy of Quadratic Lyapunov Functions for LTV Systems</td>
<td>Abdelraouf, Hassan; Feron, Eric; Shamma, Jeff S.</td>
<td>3208-3214.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThC13.3</td>
<td>Assuring Safety of Vision-Based Swarm Formation Control</td>
<td>Hsieh, Chiao; Koh, Yubin; Li, Yangge; Mitra, Sayan</td>
<td>3215-3222.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>ThC13.4</td>
<td>Using Reward Shaping to Train Cognitive-Based Control Policies for Intelligent Tutoring Systems</td>
<td>Yuh, Madeleine; Rabb, Ethan; Thorpe, Adam; Jain, Neera</td>
<td>3223-3230.</td>
</tr>
</tbody>
</table>

ThC14 Wellington

Risk-Aware Design and Control (Invited Session)

Chair: Chapman, Margaret P University of Toronto
Co-Chair: Motee, Nader Lehigh University
Organizer: Liu, Guangyi Lehigh University
Organizer: Chapman, Margaret P University of Toronto
Organizer: Mohajerin Esfahani, Peyman TU Delft
Organizer: Motee, Nader Lehigh University

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>ThC14.1</td>
<td>Risk-Constrained Reinforcement Learning for Inverter-Dominated Power System Controls (I)</td>
<td>Kwon, Kyung-bin; Mukherjee, Sayak; Vu, Thanh Long; Zhu, Hao</td>
<td>3245-3250.</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>ThC14.2</td>
<td>Regret and Conservatism of Distributionally Robust Constrained Stochastic Model Predictive Control (I)</td>
<td>Pfefferkorn, Maik; Renganathan, Venkatramanan; Findeisen, Rolf</td>
<td>3251-3257.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThC14.3</td>
<td>Constrained Stochastic Games Including Risk-Sensitive Utility (I)</td>
<td>Singh, Vartika; Veeraruna, Kavitha</td>
<td>3258-3263.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>ThC14.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data-Driven Distributionally Robust Mitigation of Risk of Cascading Collisions (I), pp. 3264-3269.
 Liu, Guangyi; Amini, Arash; Pandey, Vivek; Motee, Nader

16:30-16:45 ThC14.5

Learning of Nash Equilibria in Risk-Averse Games (I), pp. 3270-3275.
 Wang, Zifan; Shen, Yi; Zavlanos, Michael M.; Johansson, Karl H.

16:45-17:00 ThC14.6

 Black, Mitchell; Fainekos, Georgios; Hoxha, Bardh; Panagou, Dimitra

ThC15 Yonge
Estimation and Control of Distributed Parameter Systems IV (Invited Session)
 Chair: Hu, Weiwei University of Georgia
 Co-Chair: Demetriou, Michael A. Worcester Polytechnic Institute
 Organizer: Hu, Weiwei University of Georgia

15:30-15:45 ThC15.1

Semismooth Newton Method for Boundary Bilinear Control (I), pp. 3284-3289.
 Casas Renteria, Eduardo; Chrysafinos, Konstantinos; Mateos, Mariano

15:45-16:00 ThC15.2

Finite Dimensional Stabilizing Controllers for a Class of Distributed Parameter Systems (I), pp. 3290-3295.
 Yegin, M. Oguz; Ozbay, Hitay

16:00-16:15 ThC15.3

 Belhadjoudj, Mohamed Camil; Krstic, Miroslav; Maghenem, Mohamed Adlene; Witrant, Emmanuel

16:15-16:30 ThC15.4

Artificial Compression POD Reduced Order Model for Control of MHD Flows (I), pp. 3302-3307.
 Ravindran, S.S.

16:30-16:45 ThC15.5

Sum of Squares Approximations to Energy Functions (I), pp. 3308-3315.
 Adjerid, Hamza; Borggaard, Jeff

ThC16 Dockside 4
Dynamics and Control of Wave Energy Converters (Invited Session)
 Chair: Zuo, Lei University of Michigan
 Co-Chair: Ringwood, John V. Maynooth University, Ireland
 Organizer: Hasankhani, Arezoo Cornell University
 Organizer: Tang, Yufei Florida Atlantic University
 Organizer: Li, Perry Y. Univ. of Minnesota
 Organizer: Zuo, Lei Univeristy of Michigan
 Organizer: Demetriou, Michael A. Worcester Polytechnic Institute

15:30-15:45 ThC16.1

On the Controllability of an Active Mechanical Motion Rectifier for Wave Energy Converters (I), pp. 3316-3321.
 Fornaro, Pedro; Ringwood, John V.

15:45-16:00 ThC16.2

 Demonte Gonzalez, Tania; Tom, Nathan; Parker, Gordon G.

16:00-16:15 ThC16.3

 Skrovanek, David; Brekken, Ted

16:15-16:30 ThC16.4

Towards the Optimal Control of an Active Mechanical Rectifier Power Take-Off Using Dynamic Programming (I), pp. 3334-3339.
Yang, Lisheng; Li, Xiaofan; Zuo, Lei

ThC17 Dockside 5
Modeling and Identification I (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>ThC17.1</td>
<td>Bootstraped Gaussian Mixture Model-Based Data-Driven Forward Stochastic Reachability Analysis, pp. 3340-3345.</td>
<td>Choi, Joonwon; Park, Hyunsang; Hwang, Inseok</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>ThC17.2</td>
<td>Linguistic Modeling: Validation, Improvement, and Uncertainty, pp. 3346-3351.</td>
<td>Rhinehart, R. Russell</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThC17.3</td>
<td>A Comparison between Markov Chain and Koopman Operator Based Data-Driven Modeling of Dynamical Systems, pp. 3352-3358.</td>
<td>Tafazzol, Saeid; Li, Nan; Kolmanovsky, Ilya V.; Filev, Dimitar P.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>ThC17.4</td>
<td>A Parameterised Family of neuralODEs Optimally Fitting Steady-State Data, pp. 3359-3364.</td>
<td>Shakib, Fahim; Scarciotti, Giordano; Astolfi, Alessandro</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>ThC17.5</td>
<td>Moving-Window Integrated Physics-Data-Based Modeling of Lateral Dynamics, pp. 3365-3370.</td>
<td>Wei, Wenpeng; Yin, Guodong; Wang, Jinxiang; He, Tianyi</td>
</tr>
</tbody>
</table>

ThC18 Dockside 6
Stability of Nonlinear Systems III (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>ThC18.1</td>
<td>Confidence-Aware Safe and Stable Control of Control-Affine Systems, pp. 3371-3376.</td>
<td>Wei, Shiqing; Krishnamurthy, Prashanth; Khorrami, Farshad</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>ThC18.2</td>
<td>Improved Small Signal L2-Gain Analysis for Nonlinear Systems, pp. 3377-3382.</td>
<td>Strong, Amy; Lavaei, Reza; Bridgeman, Leila J.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThC18.3</td>
<td>Approximating Regions of Attraction Via Flow-Control Barrier Functions and Constrained Polytope Expansion, pp. 3383-3390.</td>
<td>Ubellacker, Wyatt; Csomay-Shanklin, Noel; Ames, Aaron D.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>ThC18.4</td>
<td>On Decomposition and Convergence of Distributed Optimization Algorithms, pp. 3391-3396.</td>
<td>Wu, Wuwei; Zhang, Shiqi; Li, Zhongkui; Chen, Jie; Georgiou, Tryphon T.</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>ThC18.5</td>
<td>Synthesizing Controller for Safe Navigation Using Control Density Function, pp. 3397-3402.</td>
<td>Moyalan, Joseph; Krishnamoorthy Shankara Narayanan, Sriram Sundar; Zheng, Andrew; Vaidya, Umesh</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>ThC18.6</td>
<td>Lyapunov Neural Network with Region of Attraction Search, pp. 3403-3410.</td>
<td>Wang, Zili; Andersson, Sean B.; Tron, Roberto</td>
</tr>
</tbody>
</table>

ThC19 Pier 7
Uncertain Systems II (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Choi, Hyungjin; Elliott, Ryan; Venkat, Dhruva; Trudnowski, Daniel J.

15:45-16:00 ThC19.2
Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings, pp. 3417-3423.
Schön, Oliver; Zhong, Zhengang; Soudjani, Sadegh

16:00-16:15 ThC19.3
Minimal Gelbrich Distance to Uncorrelation, pp. 3424-3429.
Borelle, Matthieu; Alamo, Teodoro; Stoica, Cristina; Bertrand, Sylvain; Camacho, Eduardo F.

16:15-16:30 ThC19.4
Approximate Optimal Indirect Control of an Unknown Agent within a Dynamic Environment Using a Lyapunov-Based Deep Neural Network, pp. 3430-3435.
Philor, Jhyv; Makumi, Wanjiku A.; Bell, Zachary I.; Dixon, Warren E.

16:30-16:45 ThC19.5
Awan, Asad Ullah; Zamani, Majid

16:45-17:00 ThC19.6
Midrange Estimation for Sensor Fusion, pp. 3442-3447.
Komaee, Arash

ThC20
Observers for Linear Systems (Regular Session)

Chair: Ozer, Ahmet Ozkan
Co-Chair: Hamel, I3S-CNRS-UCA Tarek

15:30-15:45 ThC20.1
Ozer, Ahmet Ozkan; Rasaq, Uthman; Khalilullah, Sk Md Ibrahim

15:45-16:00 ThC20.2
A Necessary and Sufficient Condition for

State Omnicience of Linear Time-Invariant Distributed Estimators, pp. 3454-3459.
Hays, Christopher; Phillips, Sean; Henderson, Troy

16:00-16:15 ThC20.3
Cyber-Attack Detection and Isolation in Event-Based Cyber-Physical Systems, pp. 3460-3466.
Eslami, Ali; Khorasani, Khashayar

16:15-16:30 ThC20.4
State Estimation for Linear Systems with Quadratic Outputs, pp. 3467-3472.
Berkane, Souaimane; Theodosis, Dionysios; Dimarogonas, Dimos V.; Hamel, Tarek

16:30-16:45 ThC20.5
Parameter Estimation-Based State Reconstruction of Uncertain Linear Systems with Overparameterization and Unknown Additive Perturbations, pp. 3473-3479.
Glushchenko, Anton; Lastochkin, Konstantin

ThC21
Fault Detection and Monitoring of Energy Storage Systems for Increased Safety and Cycle (Invited Session)

Chair: Soudbakhsh, Damoon
Co-Chair: Lin, Xinfan
Organizer: Zhang, Dong
Organizer: Soudabakhsh, Damoon
Organizer: Jain, Neera
Organizer: Dey, Satadru
Organizer: Tang, Shuxia
Organizer: Roy, Tanushree
Organizer: Moura, Scott
Organizer: Lin, Xinfan

Temple University
University of California, Davis
University of Oklahoma
Temple University
Purdue University
The Pennsylvania State University
Texas Tech University
Texas Tech University
University of California, Berkeley
University of California, Davis

127
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-15:45</td>
<td>ThC21.1</td>
<td>Real-Time Internal Short Circuit Detection in Li-Ion Battery Modules During Field Use (I), pp. 3480-3485.</td>
<td>Ahmadzadeh, Omidreza; Tewari, Deepti; Jeevarajan, Judith; Soudbakhsh, Damoon</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>ThC21.2</td>
<td>Post-Damage Short Circuit Detection in Lithium-Ion Batteries (I), pp. 3486-3491.</td>
<td>Bhaskar, Kiran; Moon, Jihoon; Rahn, Christopher D.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>ThC21.3</td>
<td>Differential Voltage Analysis and Patterns in Parallel-Connected Pairs of Imbalanced Cells (I), pp. 3492-3497.</td>
<td>Wong, Clement; Weng, Andrew; Pannala, Sravan; Choi, Jeessoon; Siegel, Jason B.; Stefanopoulou, Anna G.</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>ThC21.4</td>
<td>Emergency Battery Discharge under Safety Constraints Using Optimization-Based Controllers (I), pp. 3498-3503.</td>
<td>Ebrahimi, Iman; De Castro, Ricardo; Tran, Vivian; Stefanopoulou, Anna G.; Feng, Shuang</td>
</tr>
</tbody>
</table>
Technical Program for Friday July 12, 2024

FrP1

Automatic Control in the Era of Artificial Intelligence (Plenary Session)

Chair: Leang, Kam K.
Co-Chair: Grover, Martha
University of Utah
Georgia Institute of Technology

08:30-09:30 FrP1.1
Automatic Control in the Era of Artificial Intelligence, pp. 3504-3504.
Borrelli, Francesco

FrA01
Learning and Optimization (RI Session)

Chair: Chhabra, Robin
Co-Chair: Yi, Jingang
Carleton University
Rutgers University

10:00-10:03 FrA01.1
Utilizing Load Shifting for Optimal Compressor Sequencing in Industrial Refrigeration, pp. 3505-3510.
Konda, Rohit; Chandan, Vikas; Crossno, Jesse; Pollard, Blake; Walah, Daniel; Bohonek, Rick; Marden, Jason R.

10:03-10:06 FrA01.2
Exponential Stability of Primal-Dual Gradient Method for Distributed Convex Strongly Concave Minimax Problem, pp. 3511-3516.
Hu, Binxin; Liang, Shu

10:06-10:09 FrA01.3
Communication-Constrained STL Task Decomposition through Convex Optimization, pp. 3517-3523.
Marchesini, Gregorio; Liu, Suyuan; Lindemann, Lars; Dimarogonas, Dimos V.

10:09-10:12 FrA01.4
Learning-Based Hierarchical Model Predictive Control for Drift Vehicles, pp. 3524-3530.
Zhou, Bei; Hu, Cheng; Shi, Yao; Hu, Xiaorong; Xie, Lei; Su, Hongye

10:12-10:15 FrA01.5
Chen, Rui; Zhao, Weiye; Liu, Ruixuan; Zhang, Weiyang; Liu, Changliu

10:15-10:18 FrA01.6
Shukla, Apurv; Zhang, Qian; Xie, Le

10:18-10:21 FrA01.7
Ford, Bryce; Kumar, Mrinal

10:21-10:24 FrA01.8
Dey, Arnab; Khatana, Vivek; Mani, Ankur; Salapaka, Murti V.

10:24-10:27 FrA01.9
Learning in Stochastic Stackelberg Games, pp. 3557-3562.
Das, Pranoy; Nortmann, Benita Alessandra Lucia; Ratliff, Lillian J.; Gupta, Vijay; Mylvaganam, Thulası
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:03</td>
<td>FrA02.1</td>
</tr>
<tr>
<td>An Iterative Method for Computing Controlled Reach-Avoid Sets, pp. 3590-3597.</td>
<td></td>
</tr>
<tr>
<td>Ren, Dejin; Wu, Taoran; Xue, Bai</td>
<td></td>
</tr>
<tr>
<td>10:03-10:06</td>
<td>FrA02.2</td>
</tr>
<tr>
<td>Long, Yanchen; Han, Liang; Dong, Fei; Hu, Qinglei; Li, Qingdong</td>
<td></td>
</tr>
<tr>
<td>10:06-10:09</td>
<td>FrA02.3</td>
</tr>
<tr>
<td>Park, GeunYoung; Choi, Kyunghwan; Kum, Dongsuk</td>
<td></td>
</tr>
<tr>
<td>10:12-10:15</td>
<td>FrA02.5</td>
</tr>
<tr>
<td>Zhou, Mi; Verriest, Erik I.; Abdallah, Chaouki T.</td>
<td></td>
</tr>
<tr>
<td>10:18-10:21</td>
<td>FrA02.7</td>
</tr>
<tr>
<td>Baddam, Vasanth Reddy; Gumussoy, Suat; Eldardiry, Hoda; Boker, Almuatazbellah</td>
<td></td>
</tr>
<tr>
<td>10:21-10:24</td>
<td>FrA02.8</td>
</tr>
<tr>
<td>Kokolakis, Nick-Marios T.; Vamvoudakis, Kyriakos G.</td>
<td></td>
</tr>
</tbody>
</table>

FrA02 Harbour

RI: Advances in Optimal Control (RI Session)

| Chair: Andersson, Sean B. |
| Co-Chair: Yao, Bin |
| Boston University |
| Purdue University |

Vladu, Emil

Composition of Control Barrier Functions with Differing Relative Degrees for Safety under Input Constraints, pp. 3692-3697.

Rabiee, Pedram; Hoagg, Jesse B.

Safari, Amirsaeid; Hoagg, Jesse B.

Athalye, Surabhi; Fotiadis, Filippos; Vamvoudakis, Kyriakos G.; Hugues, Jerome

A Case Study on the Convergence of Direct Policy Search for Linear Quadratic Gaussian Control, pp. 3710-3715.

Keivan, Darioush; Seiler, Peter; Dullerud, Geir E.; Hu, Bin

Asynchronous Block Parallel Policy Optimization for the Linear Quadratic Regulator, pp. 3716-3721.

Sha, Xingyu; You, Keyou

Control Barrier Functions in Dynamic UAVs for Kinematic Obstacle Avoidance: A Collision Cone Approach, pp. 3722-3727.

Tayal, Manan; Singh, Rajpal; Keshavan, Jishnu; Nadubettu Yadukumar, Shishir

Podder, Amit Kumer; Sadamoto, Tomonori; Chakrabortty, Aranya

A Safe and Computationally Efficient Tracking Control Algorithm for Autonomous Vehicles, pp. 3734-3739.

Notomista, Gennaro; Wardi, Yorai

Liu, Yingqiang; Chen, Zheng; Yao, Bin

Optimal Pinning Control for Synchronization Over Temporal Networks, pp. 3746-3751.

Sahaya Arokiadoss, Andrew Baggio; Kalaimani, Rachel Kalpana
Predictive Control and Gaussian Process Regression, pp. 3775-3782.
Tekumatla, Shiva; Gampa, Varun; Farzan, Slavash
10:12-10:15 FrA03.5

Zhu, Pingping; Liu, Chang; Estephan, Peter
10:15-10:18 FrA03.6

Adaptive Impedance and Admittance Controls for Physical Human-Robot Interaction with Force-Sensorless, pp. 3791-3796.
Ngo, Van-Tam; Liu, Yen-Chen
10:18-10:21 FrA03.7

Modeling Reluctance Actuator Topologies with a Focus on Stiffness, pp. 3797-3802.
Pumphrey, Michael Joseph; Al Saaideh, Mohammad; Alatawneh, Natheer; Al Janaideh, Mohammad
10:21-10:24 FrA03.8

Motion Control of a Cable Robotic LED Light Fixture with IoT Connectivity, pp. 3803-3808.
Tavakoli, Negar; Mohagheghi, Afagh; Moallem, Mehrdad
10:24-10:27 FrA03.9

A Robust Sliding-Mode Control Framework for Quadrotors Subject to Model Uncertainty and External Disturbances, pp. 3809-3814.
Yang, Yefeng; Huang, Tao; Wang, Tianqi; Chih-Yung, Wen
10:27-10:30 FrA03.10

Precision ZP Perforation Automation: A Vision-Based Robotic Approach for Blastocyst Embryo Biopsy, pp. 3815-3820.
Abu Ajamieh, Ihab; Al Janaideh, Mohammad; Mills, James K.
10:30-10:33 FrA03.11

Flux Estimation and Control Based on High-Gain Observer for Variable Reluctance Actuator Using the Measured Current Only, pp. 3821-3826.
Al Saaideh, Mohammad; Alatawneh, Natheer; Aljanaideh, Omar; Al Janaideh, Mohammad
10:33-10:36 FrA03.12

Risk-Based Socially-Compliant Behavior Planning for Autonomous Driving, pp. 3827-3832.
Lyu, Yiwei; Luo, Wenhao; Dolan, John
10:36-10:39 FrA03.13

Joint Trajectory Optimization for Redundant Manipulators with Constant Path Speed, pp. 3833-3840.
Fried, Jonathan; Paternain, Santiago
10:39-10:42 FrA03.14

Adaptive Backstepping Control of a Bicopter in Pure Feedback Form with Dynamic Extension, pp. 3841-3846.
Portella Delgado, Jhon Manuel; Mirtaba, Mohammad; Goel, Ankit
10:42-10:45 FrA03.15

Hybrid Task Constrained Incremental Planner for Robot Manipulators in Confined Environments, pp. 3847-3852.
Sun, Yifan; Zhao, Weiye; Liu, Changliu
10:45-10:48 FrA03.16

Data-Driven Frequency-Based Feedforward Control Design for a Robotic Arm Joint, pp. 3853-3858.
Schuchert, Philippe; Karimi, Alireza
10:48-10:51 FrA03.17

A Sliding Cone Control Method for Robust Robot Running, pp. 3859-3866.
Lo, Chun Ho; David; Ng, Wee Shen; Chu, Xiangyu; Au, Kwok Wai Samuel
10:51-10:54 FrA03.18

Adaptive Nonlinear Control of a Bicopter with Unknown Dynamics, pp. 3867-3872.
Portella Delgado, Jhon Manuel; Goel, Ankit
10:54-10:57 FrA03.19

EMPC-Based Flight Controller Design for a Quadrotor with Unbalanced Payload, pp. 3873-3878.
Zhang, Xiangyu; Mu, Bingxian; Yoon, Se Young (Pablo)
10:57-11:00 FrA03.20

Newton-Raphson Flow for Aggressive Quadrotor Tracking Control, pp. 3879-3884.
Morales-Cuadrado, Evanns; Llanes, Christian; Wardi, Yorai; Coogan, Samuel
<table>
<thead>
<tr>
<th>FrA04</th>
<th>Metro W</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI: Stochastic and Nonlinear Systems (RI Session)</td>
<td></td>
</tr>
<tr>
<td>Chair: Morgansen, University of Kristi A. Washington</td>
<td></td>
</tr>
<tr>
<td>Co-Chair: Coogan, Georgia Institute of Samuel Technology</td>
<td></td>
</tr>
<tr>
<td>10:00-10:03</td>
<td>FrA04.1</td>
</tr>
<tr>
<td>Cohen, Max; Mann, Makai; Leahy, Kevin; Belta, Calin</td>
<td></td>
</tr>
<tr>
<td>10:06-10:09</td>
<td>FrA04.3</td>
</tr>
<tr>
<td>Shen, Xun; Wang, Ye</td>
<td></td>
</tr>
<tr>
<td>10:12-10:15</td>
<td>FrA04.5</td>
</tr>
<tr>
<td>Average Cost Optimality of Partially Observed MDPs: Contraction of Non-Linear Filters and Existence of Optimal Solutions and Approximations, pp. 3909-3914.</td>
<td></td>
</tr>
<tr>
<td>Demirci, Yunus emre; Kara, Ali Devran; Yuksel, Serdar</td>
<td></td>
</tr>
<tr>
<td>10:15-10:18</td>
<td>FrA04.6</td>
</tr>
<tr>
<td>Hill, Colton; Brown, Philip N.; Paarporn, Keith</td>
<td></td>
</tr>
<tr>
<td>10:03-10:06</td>
<td>FrA04.2</td>
</tr>
<tr>
<td>Uncertainty and Its Effect on Optimal Multidrug Control of Hemodynamic Variables, pp. 3891-3896.</td>
<td></td>
</tr>
<tr>
<td>Popescu, Teodora; Birș, Isabela; Ben Othman, Ghada; Yumuk, Erhan; Mihai, Marcian; Hegedus, Erwin; Copot, Dana; De Keyser, Robin M.C.; Ionescu, Clara; Muresan, Cristina Ioana</td>
<td></td>
</tr>
<tr>
<td>10:09-10:12</td>
<td>FrA04.4</td>
</tr>
<tr>
<td>Boche, Holger; Pohl, Volker; Poor, H. Vincent</td>
<td></td>
</tr>
<tr>
<td>10:39-10:42</td>
<td>FrA04.14</td>
</tr>
<tr>
<td>Sampled-Data Output Feedback Control of the Stefan Problem with Explicit Condition of Sampling Scheduling, pp. 3966-3971.</td>
<td></td>
</tr>
<tr>
<td>Koga, Shumon</td>
<td></td>
</tr>
</tbody>
</table>

Discontinuous Barrier Functions for Piecewise Continuous Dynamics, pp. 3987-3992.

Adaptive Controller with Novel Phase Estimator for LLC Resonant Converter, pp. 3993-3998.

Reach-Avoid Analysis for Sampled-Data Systems with Measurement Uncertainties, pp. 4005-4011.

Real-Time Feasible Usage of Radial Basis Functions for Representing Unstructured Environments in Optimal Ship Control, pp. 4050-4057.

A Non-Linear Mixed Constrained Problem Involving Sweeping Processes, pp. 4058-4063.

Defending a Static Target Point with a Slow Defender, pp. 4064-4071.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s) Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:15-14:30</td>
<td>FrB02.4</td>
<td>Das, Goutam; Dorothy, Michael; Bell, Zachary I.; Shishika, Daigo</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>FrB02.5</td>
<td>Hajar, Joudi; Sabag, Oron; Hassibi, Babak</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>FrB02.6</td>
<td>Wang, Yujia; Wu, Zhe</td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>FrB03.1</td>
<td>FrB03 Frontenac Mechatronics II (Invited Session)</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>FrB03.2</td>
<td>Chair: Al Janaideh, Mohammad</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>FrB03.3</td>
<td>Co-Chair: Mishra, Richa</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>FrB03.4</td>
<td>Davino, Daniele; Monteiro, Giselle; Al SSAAIDeh, Mohammad; Krejci, Pavel; Al Janaideh, Mohammad</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>FrB03.5</td>
<td>FrB04 Metro W Autonomous Planning and Control (Invited Session)</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>FrB03.6</td>
<td>Chair: Zhang, Fumin; Co-Chair: Motee, Nader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co-Chair: Motee, Nader</td>
</tr>
</tbody>
</table>

FrB02.4
Regret-Optimal Control under Partial Observability, pp. 4072-4077.
Hajar, Joudi; Sabag, Oron; Hassibi, Babak

FrB02.5
Wang, Yujia; Wu, Zhe

FrB02.6
Liu, Vincent; Manzie, Chris; Dower, Peter M.

FrB03.1
Mishra, Richa; Moheimani, S.O. Reza

FrB03.2
Zhang, Yunzhi; Rakotondrabe, Micky; Feng, Zhao; Zhu, Yuchuan; Ling, Jie

FrB03.3
Output Feedback Control of a Nonlinear Galfenol-Based Actuator for Active Vibration Control Systems (I), pp. 4102-4107.
Clemente, Carmine; Loschiavo, Vincenzo; Davino, Daniele; Monteiro, Giselle; Al SSAAIDeh, Mohammad; Krejci, Pavel; Al Janaideh, Mohammad

FrB03.4
Output Feedback Control of a Piezoelectric Robotic Manipulator During the Characterization of an Object Exhibiting Nonlinear Viscoelastic Deformation (I), pp. 4108-4113.
Flores, Gerardo; Rakotondrabe, Micky

FrB03.5
Gaskell, Eric; Tan, Xiaobo

FrB03.6
On Precision Motion Control for an Industrial Long-Stroke Motion System with a Nonlinear Micropositioning Actuator (I), pp. 4120-4125.
Al-Rawashdeh, Yazen Mohammad; Al SSAAIDeh, Mohammad; Heertjes, Marcel; Al Janaideh, Mohammad

FrB04.1
Kermanshah, Mehdi; Belta, Calin; Tron, Roberto

FrB04.2
Time-Robust Path Planning with Piece-Wise Linear Trajectory for Signal Temporal Logic Specifications (I), pp. 4133-4140.
Le, Nhan-Khanh; Noorani, Erfan; Hirche,
Community Consensus: Converging Locally Despite Adversaries and Heterogeneous Connectivity (I), pp. 4141-4148.

FrB04.4
Investigating the Effectiveness of Reinforcement Learning in Closed-Loop Systems with Time Delays (I), pp. 4149-4154.

FrB04.5
Hybrid Zonotope-Based Backward Reachability Analysis for Neural Feedback Systems with Nonlinear Plant Models (I), pp. 4155-4161.

FrB04.6

FrB05
Information-Theoretic Control (Regular Session)

FrB05.1
Near-Optimality of Finite-Memory Codes and Reinforcement Learning for Zero-Delay Coding of Markov Sources, pp. 4170-4175.

FrB05.2
Active Fixed-Sample-Size Hypothesis Testing Via POMDP Value Function Lipschitz Bounds, pp. 4176-4181.

FrB05.3
Information-Seeking Polynomial NARX Model-Predictive Control through Expected Free Energy Minimization, pp. 4182-4187.

FrB06
Decentralized Control (Regular Session)

FrB06.1
Exploiting Heterogeneity in the Decentralised Control of Platoons, pp. 4210-4215.

FrB06.2
Encrypted Decentralized Model Predictive Control of Nonlinear Processes with Input Delays, pp. 4216-4223.

FrB06.3

FrB06.4
Mean Field Games on Dense and Sparse Networks: The Graphexon MFG Equations, pp. 4230-4235.
A Distributed Buffering Drift-Plus-Penalty Algorithm for Coupling Constrained Optimization, pp. 4236-4241.
Wang, Dandan; Zhu, Daokuan; Ou, Zichong; Lu, Jie

FrB07
Queens Quay 2
Modeling and Control of Alternative Powertrains and Mobility Systems (Invited Session)

<table>
<thead>
<tr>
<th>Chair</th>
<th>Southwest Research Institute</th>
<th>Co-Chair</th>
<th>General Motors</th>
<th>Organizer</th>
<th>General Motors Holdings LLC</th>
<th>Organizer</th>
<th>UC Davis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajakumar Deshpande</td>
<td></td>
<td>Gupta, Shreshta</td>
<td>Zhu, Guoming</td>
<td>Maddipatla</td>
<td>Srivenkata Satya Prasad</td>
<td>Xu, Zhe</td>
<td></td>
</tr>
<tr>
<td>Shreshta</td>
<td></td>
<td>General Motors</td>
<td>Shreshta</td>
<td>Saravanane</td>
<td>Nayendhiran</td>
<td>Zhe, Co-Chair</td>
<td></td>
</tr>
<tr>
<td>Gamache, Corey</td>
<td></td>
<td>Zhu, Guoming</td>
<td></td>
<td>Maddipatla</td>
<td>Srivenkata Satya Prasad</td>
<td>Zhe, Co-Chair</td>
<td></td>
</tr>
</tbody>
</table>

13:30-13:45 **FrB07.1**
LQTI EGR Rate and Boost Pressure Control of a Diesel Engine Assisted by an EBoost (I), pp. 4242-4247.
Gamache, Corey; Zhu, Guoming

13:45-14:00 **FrB07.2**
Govind Raju, Sathya Aswath; Sun, Zongxuan; Kim, Kenneth; Kweon, Chol-Bum

14:00-14:15 **FrB07.3**
Vehicle Speed Profile Optimization for Fuel Efficient Eco-Driving Via Koopman Linear Predictor and Model Predictive Control (I), pp. 4254-4261.
Nugroho, Sebastian Adi; Chellapandi, Vishnu Pandi; Borhan, Hoseinali

14:15-14:30 **FrB07.4**
LQ Control of Traffic Flow Models Via Variable Speed Limits (I), pp. 4262-4267.

FrB08
Bay
Control Applications I (Regular Session)

<table>
<thead>
<tr>
<th>Chair</th>
<th>Arizona State University</th>
<th>Co-Chair</th>
<th>Demcon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu, Zhe</td>
<td></td>
<td>Beijen, Michiel</td>
<td></td>
</tr>
</tbody>
</table>

13:30-13:45 **FrB08.1**
Performance Analysis of Moving Average Filter Using Allan Variance, pp. 4283-4288.
Maddipatla, Srivenkata Satya Prasad; Brennan, Sean

13:45-14:00 **FrB08.2**
Baharisangari, Nasim; Saravanane, Narendhiran; Xu, Zhe

14:00-14:15 **FrB08.3**
Hybrid Control of a Variable-Speed Peristaltic Pump, pp. 4296-4301.
Beijen, Michiel; Tijman op Smeijers, Thijs; Boerigter, Gijs; van den Eijnden, Sebastiaan

14:15-14:30 **FrB08.4**
Sharma, Aayushman; Mao, Zirui; Yang, Haiying; Chakravorty, Suman; Demkowicz, Michael; Kalathil, Dileep

14:30-14:45 **FrB08.5**
An Efficiency Scanning Strategy Based on Online Smoothing Variable-Speed for AFM with a Rotating Stage, pp. 4308-4313.
Chen, Huang-Chih; Peng, Sheng-Wei;
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrB08.6</td>
<td>14:45-15:00</td>
<td>Safe Extremum Seeking Applications in Particle Accelerators</td>
<td>Chou, Ting-An; Fu, Li-Chen</td>
</tr>
<tr>
<td>FrB09.5</td>
<td>14:30-14:45</td>
<td>SPI-ORFit: One-Pass Learning with Bregman Projection</td>
<td>Sean; Sofge, Don; Zhang, Fumin</td>
</tr>
<tr>
<td>FrB09.6</td>
<td>14:45-15:00</td>
<td>Active Perception Using Neural Radiance Fields</td>
<td>He, Siming; Hsu, Christopher; Ong, Dexter; Shao, Yifei; Chaudhari, Pratik</td>
</tr>
<tr>
<td>FrB09.1</td>
<td>13:30-13:45</td>
<td>A Data-Driven Formulation of the Maximal Admissible Set and the Data-Enabled Reference Governor</td>
<td>Ossareh, Hamid</td>
</tr>
<tr>
<td>FrB09.2</td>
<td>13:45-14:00</td>
<td>Data-Driven System Interconnections and a Novel Data-Enabled Internal Model Control</td>
<td>Pedari, Yasaman; Lee, Jaeho; Eun, Yongsoon; Ossareh, Hamid</td>
</tr>
<tr>
<td>FrB09.3</td>
<td>14:00-14:15</td>
<td>A Parametric Bayesian Optimization Framework for Batch Dynamical Systems</td>
<td>Thompson, Jaron; MacKinnon, Lloyd; Venturelli, Ophelia; Zavala, Victor M.</td>
</tr>
<tr>
<td>FrB09.4</td>
<td>14:15-14:30</td>
<td>Line-Of-Sight Visual Target Tracking Via Particle-Based Belief Propagation</td>
<td>Lin, Tony; Gagvani, Manav; Lindstrom, Sean; Sofge, Don; Zhang, Fumin;</td>
</tr>
<tr>
<td>FrB09.5</td>
<td>14:30-14:45</td>
<td>SPI-ORFit: One-Pass Learning with Bregman Projection</td>
<td>Sean; Sofge, Don; Zhang, Fumin</td>
</tr>
<tr>
<td>FrB09.6</td>
<td>14:45-15:00</td>
<td>Active Perception Using Neural Radiance Fields</td>
<td>He, Siming; Hsu, Christopher; Ong, Dexter; Shao, Yifei; Chaudhari, Pratik</td>
</tr>
<tr>
<td>FrB09.1</td>
<td>13:30-13:45</td>
<td>A Data-Driven Formulation of the Maximal Admissible Set and the Data-Enabled Reference Governor</td>
<td>Ossareh, Hamid</td>
</tr>
<tr>
<td>FrB09.2</td>
<td>13:45-14:00</td>
<td>Data-Driven System Interconnections and a Novel Data-Enabled Internal Model Control</td>
<td>Pedari, Yasaman; Lee, Jaeho; Eun, Yongsoon; Ossareh, Hamid</td>
</tr>
<tr>
<td>FrB09.3</td>
<td>14:00-14:15</td>
<td>A Parametric Bayesian Optimization Framework for Batch Dynamical Systems</td>
<td>Thompson, Jaron; MacKinnon, Lloyd; Venturelli, Ophelia; Zavala, Victor M.</td>
</tr>
<tr>
<td>FrB09.4</td>
<td>14:15-14:30</td>
<td>Line-Of-Sight Visual Target Tracking Via Particle-Based Belief Propagation</td>
<td>Lin, Tony; Gagvani, Manav; Lindstrom, Sean; Sofge, Don; Zhang, Fumin;</td>
</tr>
<tr>
<td>Time</td>
<td>Session Code</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>FrB10.6</td>
<td>ArUco Based Reference Shaping for Real-Time Precision Motion Control for Suspended Payloads</td>
<td>Stein, Adrian; Vexler, David; Singh, Tarunraj</td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>FrB11.1</td>
<td>Data-Driven Design of Complex Network Structures to Promote Synchronization</td>
<td>Coraggio, Marco; di Bernardo, Mario</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>FrB11.2</td>
<td>Enhancing Protein Crystal Purity through Adaptive Kinetic Monte Carlo Modeling and Control of Surface Morphology</td>
<td>Nagpal, Satchit; Kwon, Joseph</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>FrB11.3</td>
<td>Competitive Networked Bivirus SIS Spread Over Hypergraphs</td>
<td>Gracy, Sebin; Anderson, Brian D.O.; Ye, Mengbin; Uribe, Cesar A.</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>FrB11.4</td>
<td>A Lyapunov Approach to Stochastic Interaction Dynamics Over Large-Scale Networks</td>
<td>Como, Giacomo; Fagnani, Fabio; Zampieri, Sandro</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>FrB11.5</td>
<td>Machine Learning-Based Initialization of Generalized Benders Decomposition for...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB11.6</td>
<td>Active Risk Aversion in SIS Epidemics on Networks</td>
<td>Bizyaeva, Anastasia; Ordoricula Arango, Marcela; Zhou, Yunxiu; Levin, Simon; Leonard, Naomi Ehrich</td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>FrB12.1</td>
<td>Data-Driven Modeling and Control of Semicontinuous Distillation Process</td>
<td>Aenugula, Sathki Prasanth; Chandrasekar, Aswin; Mhaskar, Prashant; Adams, Thomas</td>
</tr>
<tr>
<td>13:45-14:00</td>
<td>FrB12.2</td>
<td>Enhancing Protein Crystal Purity through Adaptive Kinetic Monte Carlo Modeling and Control of Surface Morphology</td>
<td>Nagpal, Satchit; Kwon, Joseph</td>
</tr>
<tr>
<td>14:00-14:15</td>
<td>FrB12.3</td>
<td>A Compact Design for Soft Sensors Based on Information-Bottleneck Theory</td>
<td>Gao, Xinrui; Zhao, Jiarui; Shardt, Yuri</td>
</tr>
<tr>
<td>14:15-14:30</td>
<td>FrB12.4</td>
<td>A Two-Tier Encrypted Control Architecture for Enhanced Cybersecurity of Nonlinear Processes, pp. 4452-4459.</td>
<td>Kadakia, Yash Ashit; Suryavanshi, Atharva Vijay; Alnajidi, Aisha; Abdullah, Fahim; Christofides, Panagiotis D.</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>FrB12.5</td>
<td>Machine Learning-Based Initialization of Generalized Benders Decomposition for...</td>
<td></td>
</tr>
</tbody>
</table>
Mixed Integer Model Predictive Control, pp. 4460-4465.
Mitrai, Ilias; Daoutidis, Prodromos

14:45-15:00 FrB12.6
Liñán, David A.; Reynoso Donzelli, Simone; Ricardez-Sandoval, Luis

FrB13 Richmond
Manufacturing and Precision Mechatronic Systems (Regular Session)

Chair: Labbadi, Moussa
Aix-Marseille University, LIS UMR CNRS 7020, Marseille, France
Co-Chair: Orosz, Gabor
University of Michigan

13:30-13:45 FrB13.1
Predictive Modeling of Human Fatigue in a Manufacturing-Like Setting, pp. 4472-4478.
Rafter, Abigail; Barton, Kira; Tilbury, Dawn M.

13:45-14:00 FrB13.2
Control Barrier Functionals for Safety-Critical Control of Registration Accuracy in Roll-To-Roll Printing Systems, pp. 4479-4484.
Chen, Zhiyi; Orosz, Gabor; Ni, Jun

14:00-14:15 FrB13.3
Predictable Multi-Core Implementation of Multi-Rate Sensor Fusion for High-Precision Positioning Systems, pp. 4485-4492.
Jugade, Chaitanya; Mohamed, Sajid; Goswami, Dip; Nelson, Andrew; Van der veen, Gijs; Goossens, Kees

14:15-14:30 FrB13.4
Nassiri, Samir; Labbadi, Moussa; Chatri, Chakib; Cherkaooui, Mohamed

14:30-14:45 FrB13.5
Voltage Waveform Optimization through Data-Driven Modeling in Electrohydrodynamic Jet Printing, pp. 4499-4505.

FrB14 Wellington
ASME-IEEE Joint Invited Session on Healthcare and Medical Systems (Invited Session)

Chair: Allen, Brendon C.
Auburn University
Co-Chair: Frigge, Anna Franziska
Uppsala University
Organizer: Rose, Chad
Auburn University
Organizer: Allen, Brendon C.
Auburn University
Organizer: Zhang, Wenlong
Arizona State University
Organizer: Hahn, Jin-Oh
University of Maryland
Organizer: Medvedev, Alexander V.
Uppsala University

13:30-13:45 FrB14.1
Abdelazim, Eman; Fathy, Hosam K.

13:45-14:00 FrB14.2
Baskaran, Avinash; Basyal, Sujata; Allen, Brendon C.; Rose, Chad

14:00-14:15 FrB14.3
Intersection Point-Based Analysis of Neural Balance Control Strategies by Parkinson’s Patients During Quiet Stance (I), pp. 4524-4529.
Sreenivasan, Gayatri; Zhu, Chunchu; Yi, Jingang

14:15-14:30 FrB14.4
Neural Fiber Activation in Unipolar vs Bipolar
Deep Brain Stimulation (I), pp. 4530-4535.
Frigge, Anna Franziska; Medvedev, Alexander V.; Jiltsova, Elena; Nyholm, Dag

14:30-14:45 FrB14.5
Closed-Loop Multimodal Neuromodulation of Vagus Nerve for Control of Heart Rate (I), pp. 4536-4541.
Bender, Shane; Green, David; Kilgore, Kevin; Bhadra, Niloy; Ardell, Jeffery; Vrabec, Tina

14:45-15:00 FrB14.6
Guaranteeing Safety of Patients under Mechanical Ventilation, pp. 4542-4547.
Hosseinzadeh, Mehdi

FrB15 Yonge
Estimation and Control of Distributed Parameter Systems V (Invited Session)
Chair: Demetriou, Michael A. Worcester Polytechnic Institute
Co-Chair: Hu, Weiwei University of Georgia
Organizer: Demetriou, Michael A. Worcester Polytechnic Institute
Organizer: Hu, Weiwei University of Georgia

13:30-13:45 FrB15.1
Viability under Degraded Control Authority (I), pp. 4548-4553.
El-Keibir, Hamza; Berlin, Richard; Bentsman, Joseph; Ornik, Melkior

13:45-14:00 FrB15.2
Jagt, Declan S.; Peet, Matthew M.

14:00-14:15 FrB15.3
Neumann Boundary Control of the Wave Equation Via Linear Quadratic Regulation (I), pp. 4560-4565.
Krener, Arthur J

14:15-14:30 FrB15.4

14:30-14:45 FrB15.5
Linear-Quadratic Control Problem on a Finite-Horizon for a Class of Differential-Algebraic Equations (I), pp. 4572-4578.
Alalabi, Alaa; Morris, Kirsten

14:45-15:00 FrB15.6
Li, Zhaqing; Guglielmi, Roberto

FrB16 Dockside 4
Modeling and Control for Thermal Management Systems (Invited Session)
Chair: Pangborn, Herschel The Pennsylvania State University
Co-Chair: Chakrabarty, Ankush Mitsubishi Electric Research Laboratories (MERL)
Organizer: Koeln, Justin University of Texas at Dallas
Organizer: Bird, Trevor, J. PC Krause and Associates
Organizer: Pangborn, Herschel The Pennsylvania State University
Organizer: Nash, Austin Kettering University
Organizer: Drgona, Jan Pacific Northwest National Laboratory
Organizer: Blizard, Audrey The Ohio State University

13:30-13:45 FrB16.1
Hu, Qiuhao; Amini, Mohammad Reza; Kolmanovsky, Ilya V.; Sun, Jing

13:45-14:00 FrB16.2
Shaikh, Juned; Koeln, Justin

14:00-14:15 FrB16.3

Marvi, Zahra; Alleyne, Andrew G.

14:15-14:30 FrB16.4

Understanding the Role of Thermal Energy Storage Location in the Optimal Performance and Operation of a District Cooling Network (I), pp. 4605-4611.

Andujar Lugo, Frank; Alleyne, Andrew G.

14:30-14:45 FrB16.5

Deshpande, Vedang M.; Chakrabarty, Ankush; P. Vinod, Abraham; Laughman, Christopher R.

14:45-15:00 FrB16.6

Silva, Luiz; Lizarralde, Fernando; Peixoto, Alessandro Jacoud

FrB17 Dockside 5

Modeling and Identification II (Regular Session)

Chair: Kim, Jin Sung
Co-Chair: Shen, Minghao

13:30-13:45 FrB17.1

Optimal Control for Antivirus Routing in Epidemiological-Based Heterogeneous Computer Network Clusters, pp. 4624-4630.

Wang, Shuangge; He, Zhilin; Xu, Zihao; Haskell, Cymra; Krishnamachari, Bhaskar

13:45-14:00 FrB17.2

Uncertainty Quantification of Autoencoder-Based Koopman Operator, pp. 4631-4636.

Kim, Jin Sung; Quan, Yingshuai; Chung, Chung Choo

14:00-14:15 FrB17.3

A Model for Multi-Agent Heterogeneous Interaction Problems, pp. 4637-4644.

Hsu, Christopher; Haile, Mulugeta; Chaudhari, Pratik

14:15-14:30 FrB17.4

Vernerey, Flora; Riedinger, Pierre; Iannelli, Andrea; Daafouz, Jamal

14:30-14:45 FrB17.5

Control-Oriented 2D Thermal Modelling of Cylindrical Battery Cells for Optimal Tab and Surface Cooling, pp. 4651-4656.

Peprah, Godwin; Wik, Torsten; Huang, Yicun; Faisal, Altaf; Zou, Changfu

FrB18 Dockside 6

Hybrid Systems (Regular Session)

Chair: Trivedi, University of Colorado
Co-Chair: Phillips, Air Force Research Laboratory

13:30-13:45 FrB18.1

Falsification Via Barrier Certificates, pp. 4657-4662.

Murali, Vishnu; Trivedi, Ashutosh; Zamani, Majid

13:45-14:00 FrB18.2

A Switched Reference Governor for High Performance Trajectory Tracking Control under State and Input Constraints, pp. 4663-4668.

Wang, Nan; Sanfelice, Ricardo G.; Di Cairano, Stefano

14:00-14:15 FrB18.3

Robust Hybrid Wide-Area Damping Control for Power Systems with Communication Errors, pp. 4669-4674.

Copp, David A.; Phillips, Sean

14:15-14:30 FrB18.4

Parameter Estimation for Hybrid Dynamical Systems with Delayed Jump Detection, pp. 4675-4680.

Johnson, Ryan S.; Sanfelice, Ricardo G.

14:30-14:45 FrB18.5

Dynamic Event-Triggered Control for LTI
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrB18.6</td>
<td>On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems</td>
<td>Abdelrahim, Mahmoud; Almakhles, Dhafer</td>
<td>FrB18.6</td>
<td>14:45-15:00</td>
</tr>
<tr>
<td></td>
<td>Fault-Tolerant Control of Hybrid UAV Using Weighted Control Allocation Scheme</td>
<td>Ijaz, Salman; Javaid, Umair; Nasr, Ahmed; Sun, Donglei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrB19.1</td>
<td>Path Structured Multimarginal Schrödinger Bridge for Probabilistic Learning of Hardware Resource Usage by Control Software</td>
<td>Bondar, Georgiy Antonovich; Gifford, Robert; Phan, Linh Thi Xuan; Halder, Abhishek</td>
<td>FrB19.1</td>
<td>13:30-13:45</td>
</tr>
<tr>
<td></td>
<td>Consensus Sets Based on Sarymsakov Matrices</td>
<td>Hsu, Shun-Pin</td>
<td>FrB19.2</td>
<td>13:45-14:00</td>
</tr>
<tr>
<td></td>
<td>Distributionally Robust Output-Feedback Control of Markov Jump Linear Systems</td>
<td>Mark, Christoph; Pazzaglia, Paolo; Schmidt, Kevin</td>
<td>FrB19.3</td>
<td>14:00-14:15</td>
</tr>
<tr>
<td></td>
<td>Turing-Type Instabilities and Pattern Formation Induced by Saturation Effects and Randomness in Nonlinear, Diffusive Epidemic Spread</td>
<td>Singh, Aman Kumar; Boltz, Noelle; Kumar, Manish; Ramakrishnan, Subramanian</td>
<td>FrB19.4</td>
<td>14:15-14:30</td>
</tr>
<tr>
<td></td>
<td>Guaranteed Region of Attraction of Stochastic Nonlinear Quadratic Systems</td>
<td>Tartaglione, Gaetano; Montefusco, Francesco; Ariola, Marco; Cosentino, Carlo; Merola, Alessio; Amato, Francesco</td>
<td>FrB19.5</td>
<td>14:30-14:45</td>
</tr>
<tr>
<td>FrB20</td>
<td>Sampled Data Radial Basis Function Neural Network Observer Design for Nonlinear Vehicle Dynamics</td>
<td>Abdl Ghani, Hasan; Ahmed Ali, Sofiane; Laghmara, Hind; Ainouz, Samia; Khenmar, Redouane</td>
<td>FrB20.4</td>
<td>14:15-14:30</td>
</tr>
<tr>
<td></td>
<td>Beziers and Observers for Takagi-Sugeno Models</td>
<td>Bainier, Gustave; Marx, Benoit; Ponsart, Jean-Christophe</td>
<td>FrB20.5</td>
<td>14:30-14:45</td>
</tr>
<tr>
<td>FrB21</td>
<td>On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems</td>
<td>Teter, Alexis; Chen, Yongxin; Halder, Abhishek</td>
<td>FrB21.6</td>
<td>14:45-15:00</td>
</tr>
</tbody>
</table>
Observer-Based Stabilization of Lipschitz Nonlinear Systems by Using a New Matrix-Multiplier Based LMI Approach, pp. 4759-4764.

Mohite, Shivaraj; Alma, Marouane; Zemouche, Ali

FrB21
Lyapunov Methods (Regular Session)

Chair: Sforni, Lorenzo - Alma Mater Studiorum - Università Di Bologna
Co-Chair: Poveda, Jorge I. - University of California, San Diego

13:30-13:45 FrB21.1
Receding Horizon CBF-Based Multi-Layer Controllers for Safe Trajectory Generation, pp. 4765-4770.
Sforni, Lorenzo; Notarstefano, Giuseppe; Ames, Aaron D.

13:45-14:00 FrB21.2
Characterizing Smooth Safety Filters Via the Implicit Function Theorem, pp. 4771-4776.
Cohen, Max; Ong, Pio; Bahati, Gilbert; Ames, Aaron D.

14:00-14:15 FrB21.3
Kolmanovsky, Ilya V.; Garone, Emanuele

14:15-14:30 FrB21.4
Tang, Michael; Krstic, Miroslav; Poveda, Jorge I.

14:30-14:45 FrB21.5
Liu, Jun; Meng, Yiming; Fitzsimmons, Maxwell; Zhou, Ruikun

14:45-15:00 FrB21.6
Nassiri, Samir; Labadi, Moussa; Chatri, Chakib; Cherkaoui, Mohamed

FrC01
Metro E/C
Convergence Behavior and Applications in Iterative Learning Control (Invited Session)

Chair: Koscielniak, Shane
Co-Chair: Bristow, Douglas A.
Organizer: Koscielniak, Shane

15:30-15:45 FrC01.1
Koscielniak, Shane

15:45-16:00 FrC01.2
Koscielniak, Shane

16:00-16:15 FrC01.3
Constrained Reinforcement Learning for Building Demand Response, pp. 4813-4818.
Sanchez, Jerson; Cai, Jie

16:15-16:30 FrC01.4
Iterative Learning Control of Direct Write Additive Manufacturing Using Online Process Monitoring (I), pp. 4819-4824.
Urbanski, Christopher J.; Alleyne, Andrew G.

16:30-16:45 FrC01.5
Artificial Neural Network Based ILC with Application to Stroke Rehabilitation (I), pp. 4825-4830.
Sun, Xiaoru; Freeman, Christopher T.

16:45-17:00 FrC01.6
Bounds for Transient Growth in Repetitive and Iterative Learning Control Systems (I), pp. 4831-4837.
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrC02</td>
<td>Harbour Optimal Control II (Regular Session)</td>
<td>Bristow, Douglas A.; Singler, John</td>
<td>Chair: Borum, Andy Co-Chair: Gurpegui, Alba</td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>Poisoning Actuation Attacks against the Learning of an Optimal Controller, pp. 4838-4843.</td>
<td>Fotiadis, Filippos; Kanellopoulos, Aris; Vamvoudakis, Kyriakos G.; Hugues, Jerome</td>
<td>FrC02.1</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>Pointwise Sufficient Conditions for One-Dimensional Optimal Control Problems, pp. 4844-4849.</td>
<td>Borum, Andy; Bretl, Timothy</td>
<td>FrC02.2</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>Modeling Model Predictive Control: A Category Theoretic Framework for Multistage Control Problems, pp. 4850-4857.</td>
<td>Hanks, Tyler; She, Baike; Patterson, Evan; Hale, Matthew; Klawonn, Matthew; Fairbanks, James</td>
<td>FrC02.3</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>Minimax Linear Optimal Control of Positive Systems, pp. 4858-4863.</td>
<td>Gurpegui, Alba; Tegling, Emma; Rantzer, Anders</td>
<td>FrC02.4</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>Privacy-Preserving Cloud Computation of Algebraic Riccati Equations, pp. 4864-4869.</td>
<td>Malladi, Surya; Monshizadeh, Nima</td>
<td>FrC02.5</td>
</tr>
<tr>
<td>FrC03</td>
<td>Frontenac Robotics II (Regular Session)</td>
<td>Systems, pp. 4870-4875.</td>
<td>Singh, Mayank; Lambeth, Krysten; Iyer, Ashwin; Sharma, Nitin</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>Adaptive Backstepping and Non-Singular Sliding Mode Control for Quadrotor UAVs with Unknown Time-Varying Uncertainties, pp. 4876-4882.</td>
<td>Shevidi, Arezo; Hashim, Hashim A</td>
<td>FrC03.2</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>Optimized Control Invariance Conditions for Uncertain Input-Constrained Nonlinear Control Systems, pp. 4883-4888.</td>
<td>Brunke, Lukas; Zhou, Siqi; Che, Mingxuan; Schoellig, Angela P</td>
<td>FrC03.3</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>Human Torque Estimation for an LMI-Based Convex Control Rehabilitation Strategy Using Assistive Robots, pp. 4889-4894.</td>
<td>Ibarra, Jorge; Moussa, Kaoutther; Lauber, Jimmy</td>
<td>FrC03.4</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>Optimizing Energy Efficiency with Configuration Constraints for AMR Trajectory Planning, pp. 4895-4900.</td>
<td>Chu, Jian; Huang, Joey; Bakshi, Soovadeep; Zhu, Yongye; Ohman, Ethan; Chen, Dongmei</td>
<td>FrC03.5</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>Trajectory Tracking and Disturbance Rejection for Euler-Lagrange Systems with High-Order Actuator Dynamics, pp. 4901-4906.</td>
<td>He, Changran; Huang, Jie</td>
<td>FrC03.6</td>
</tr>
<tr>
<td>FrC04</td>
<td>Metro W Autonomous Vehicles (Regular Session)</td>
<td>Chair: Ramadan, Mohammad Argonne National Laboratory Co-Chair: Zemouche, Ali CRAN UMR CNRS 7039 & Université De Lorraine</td>
<td></td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>Developing Driving Strategies Efficiently: A Skill-Based Hierarchical Reinforcement Learning Approach, pp. 4907-4912.</td>
<td>Gurses, Yigit; Buyukdemirci, Kaan; Yildiz, Yildiray</td>
<td>FrC04.1</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>FrC04.2</td>
<td>RNN Controller for Lane-Keeping Systems with Robustness and Safety Verification</td>
<td>Quan, Yingshuai; Kim, Jin Sung; Chung, Chung Choo</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>FrC04.3</td>
<td>Radar Sensor-Based Longitudinal Motion Estimation by Using a Generalized High-Gain Observer</td>
<td>Bessafa, Hichem; Belkhatir, Zehor; Delattre, Cedric; Khemmar, Redouane; Zemouche, Ali; Rajamani, Rajesh</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>FrC04.4</td>
<td>A Control Approach for Nonlinear Stochastic State Uncertain Systems with Probabilistic Safety Guarantees</td>
<td>Ramadan, Mohammad; Alsuwaidan, Mohammad; Atallah, Ahmed; Herbert, Sylvia</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>FrC04.5</td>
<td>Trajectory-Tracking Hybrid Prescribed-Time Control for Wheeled Mobile Robots with Disturbances</td>
<td>Rodriguez-Arellano, Jesus Abraham; Miranda Colorado, Roger; Aguilar, Luis T.</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>FrC04.6</td>
<td>Hierarchical Motion Planning and Offline Robust Model Predictive Control for Autonomous Vehicles</td>
<td>Duy Nguyen, Hung; Vu, Minh Nhat; Nam, Nguyen Ngoc; Han, Kyoungseok</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>FrC05.1</td>
<td>Lyapunov Functions for Switched Linear Systems: Proof of Convergence for an LP Computational Approach</td>
<td>Hafstein, Sigurdur</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>FrC05.2</td>
<td>A Necessary and Sufficient Condition for the Existence of Static Output Feedback Stabilization Gain Via Non-Lyapunov, Null Plant Matrix (NPM) Approach</td>
<td>Yedavalli, Rama K.</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>FrC05.3</td>
<td>Construction of Robust NCR for Input-Constrained Discrete Nonlinear Systems Using Backward Reachability</td>
<td>Kothyari, Ashish; Bannerjee, Addyay; Mhaskar, Prashant</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>FrC05.4</td>
<td>Sensor Placement for Flapping Wing Model Using Stochastic Observability Gramians</td>
<td>Boyacioglu, Burak; Babaei, Mahnoush; Mamo, Amanuel; Bergbreiter, Sarah; Daniel, Thomas; Morgansen, Kristi A.</td>
</tr>
<tr>
<td>16:30-16:45</td>
<td>FrC05.5</td>
<td>A Computation Governor for ADMM-Based MPC with Constraint Satisfaction and Setpoint Tracking</td>
<td>van Leeuwen, Steven; Kolmanovsky, Ilya V.</td>
</tr>
<tr>
<td>16:45-17:00</td>
<td>FrC05.6</td>
<td>A Computational Framework for the Numerical Solution of Optimal Control Problems Governed by Partial Differential Equations</td>
<td>Davies, Alexander; Dennis, Miriam; Rao, Anil V.</td>
</tr>
<tr>
<td>15:30-15:45</td>
<td>FrC06.1</td>
<td>Efficient Near-Optimal Control of Large-Size Second-Order Linear Time-Varying Systems</td>
<td>Rustagi, Vishvendra; Baddam, Vasanth Reddy; Boker, Almutazbellah; Sultan, Cornel; Eldardiry, Hoda</td>
</tr>
<tr>
<td>15:45-16:00</td>
<td>FrC06.2</td>
<td>A Scalable Charging Algorithm for</td>
<td></td>
</tr>
</tbody>
</table>
Heterogeneous EV Fleets Based on Clustering and Learning Methods, pp. 4986-4991.
Xu, Liangcai; Gu, Xubo; Song, Ziyou

16:00-16:15 FrC06.3
Recognition of an Unknown Linear Ensemble by Its Aggregated Measurements, pp. 4992-4997.
Cheng, Gong; Miao, Wei

16:15-16:30 FrC06.4
Exploring Non-Submodular Scheduling for Large-Scale Sensor Networks, pp. 4998-5003.
Vafaei, Reza; Siami, Milad

16:30-16:45 FrC06.5
Data-Driven Moment-Based Control of Linear Ensemble Systems, pp. 5004-5009.
Vu, Minh; Singhal, Bharat; Li, Jr-Shin; Zeng, Shen

16:45-17:00 FrC06.6
Mean Field Limits for Discrete-Time Dynamical Systems Via Kernel Mean Embeddings, pp. 5010-5015.
Fiedler, Christian; Herty, Michael; Trimpe, Sebastian

FrC07 Queens Quay 2
Automotive Control (Regular Session)
Chair: Benciolini, Tommaso of Munich
Co-Chair: Ghasemi, Masood Institute

15:30-15:45 FrC07.1
Mobility Control of an In-Wheel-Motor Electric Vehicle in Severe Off-Road Terrain Conditions, pp. 5016-5023.
Ghasemi, Masood; Vantsevich, Vladimir; Moradi, Lee; Gorsich, David; Cole, Michael

15:45-16:00 FrC07.2
Power Losses Aware Nonlinear Model Predictive Control Design for Active Cell Balancing, pp. 5024-5029.
Uppal, Ali Arshad; Syed, Bilal Javed; Ahmed, Qadeer

16:00-16:15 FrC07.3
Stability Analysis and Control Design for Automated Vehicles Based on Data-Aided Model Augmentation, pp. 5030-5035.
Nemeth, Balazs; Leikó, Attila; Hegen, Tamas; Gaspar, Peter

16:15-16:30 FrC07.4
Teresa, Maria; Czuprynski, Kenneth; Zikatanov, Ludmil

16:30-16:45 FrC07.5
Benciolini, Tommaso; Yan, Yuntian; Wollherr, Dirk; Leibold, Marion

16:45-17:00 FrC07.6
Distributed Road-Map Monitoring Using Onboard Sensors, pp. 5049-5054.
Zhang, Yanyu; Greiff, Marcus Carl; Ren, Wei; Berntorp, Karl

FrC08 Bay Control Applications II (Regular Session)
Chair: Parkinson, Christian University of Arizona
Co-Chair: Labbadi, Moussa Aix-Marseille University, LIS UMR CNRS 7020, Marseille, France

15:30-15:45 FrC08.1
Parkinson, Christian; Polage, Kyle

15:45-16:00 FrC08.2
Intra-Cavity Control of an Adaptive Thin-Disk Laser with Multiple Pneumatically Actuated Deformable Mirrors, pp. 5061-5066.
Heining, André; Esser, Stefan; Mrzyglod, Stephanie; Abdou Ahmed, Marwan; Graf, Thomas; Sawodny, Oliver

16:00-16:15 FrC08.3
An Agent-Based Behavioral Change Model with Behavioral Intervention Control Techniques, pp. 5067-5074.
Fernandes, Keegan; Davison, Daniel E.;
Wang, David
16:15-16:30 FrC08.4
Dayanikli, Gokce; Lauriere, Mathieu

16:30-16:45 FrC08.5
Extremum Seeking Control Techniques for Antenna Pointing, pp. 5082-5087.
Shore, Scott; Lane, Steven; Danielson, Claus

16:45-17:00 FrC08.6
Labbadi, Moussa; Incremona, Gian Paolo; Ferrara, Antonella

FrC09 Dockside 1
Data-Driven Modeling and Control (Regular Session)
Chair: Zinage, Vrushabh
University of Texas at Austin
Co-Chair: Seiler, Peter
University of Michigan, Ann Arbor
15:30-15:45 FrC09.1
Jeloka, Bhavini; Nicolau, Florentina; Saoud, Adnane; Banavar, Ravi N.

15:45-16:00 FrC09.2
Big Data-Driven Predictive Control Using Multi-View Clustering, pp. 5100-5105.
Han, Shuangyu; Yan, Yitao; Bao, Jie; Huang, Biao

16:00-16:15 FrC09.3
Data-Driven Safety Filter: An Input-Output Perspective, pp. 5106-5112.
Bajelani, Mohammad; van Heusden, Klaske

16:15-16:30 FrC09.4
Optimality of POD for Data-Driven LQR with Low-Rank Structures, pp. 5113-5118.
Newton, Rachel; Du, Zhe; Seiler, Peter; Balzano, Laura

16:30-16:45 FrC09.5

FrC10 Dockside 2
Neural Networks (Regular Session)
Chair: Sivaranjani, S
Purdue University
Co-Chair: Saoud, Adnane
University Mohammed VI Polytechnic
15:30-15:45 FrC10.1
Lyapunov-Based Long Short-Term Memory (Lb-LSTM) Neural Network-Based Adaptive Observer, pp. 5125-5130.
Griffis, Emily; Patil, Omkar Sudhir; Hart, Rebecca; Dixon, Warren E.

15:45-16:00 FrC10.2
Lyapunov-Based Physics-Informed Long Short-Term Memory (LSTM) Neural Network-Based Adaptive Control, pp. 5131-5136.
Hart, Rebecca; Griffis, Emily; Patil, Omkar Sudhir; Dixon, Warren E.

16:00-16:15 FrC10.3
Recurrent Neural Network ODE Output for Classification Problems Follows the Replicator Dynamics, pp. 5137-5142.
Barreiro-Gomez, Julian; Poveda, Jorge L.

16:15-16:30 FrC10.4
Learning Dissipative Neural Dynamical Systems, pp. 5143-5148.
Xu, Yuezhu; Sivaranjani, S

16:30-16:45 FrC10.5
Safety Verification of Neural-Network-Based Controllers: A Set Invariance Approach, pp. 5149-5154.
Jouret, Louis; Saoud, Adnane; Olaru, Sorin

16:45-17:00 FrC10.6
Multi-Class Temporal Logic Neural Networks, pp. 5155-5162.
Li, Danyang; Tron, Roberto

FrC11 Dockside 3

Data-Driven Controller Synthesis Via Finite Abstractions with Formal Guarantees, pp. 5119-5124.
Ajeleye, Daniel; Lavaei, Abolfazl; Zamani, Majid
Sampled-Data Control (Regular Session)

Chair: Ong, Pio
California Institute of Technology

Co-Chair: Kim, Jung Hoon
Pohang University of Science and Technology

15:30-15:45
FrC11.1
Data-Driven Retrospective-Cost-Based Adaptive Digital PID Control, pp. 5163-5168.
Chee, Yin Yong; Paredes Salazar, Juan Augusto; Bernstein, Dennis S.

15:45-16:00
FrC11.2
Sample-And-Hold Safety with Control Barrier Functions, pp. 5169-5176.
Bahati, Gilbert; Ong, Pio; Ames, Aaron D.

16:00-16:15
FrC11.3
Generalized Kernel Approximation Approach to L1 Control of Sampled-Data Systems, pp. 5177-5182.
Kwak, Dohyeok; Kim, Jung Hoon; Hagiwara, Tomomichi

16:15-16:30
FrC11.4
Robust Control Barrier Functions for Sampled-Data Systems, pp. 5183-5188.
Oruganti, Pradeep Sharma; Naghizadeh, Parinaz; Ahmed, Qadeer

16:30-16:45
FrC11.5
A Novel Switching Asynchronous Sampled-Data Scheme: Implementations in Interconnected Feedback Systems, pp. 5189-5194.
Wang, Xiaoyu; Xiao, Feng; Feng, Qian

FrC12

Network Analysis and Control (Regular Session)

Chair: Aminzare, Zahra
University of Iowa

Co-Chair: Bianchin, Gianluca
University of Louvain

15:30-15:45
FrC12.1
Topology Reconstruction of Heterogeneous Networked Dynamical Systems with Unknown Input Matrices, pp. 5195-5200.
Sun, Weiyang; Xu, Jinming; Chen, Jingning

15:45-16:00
FrC12.2
Cycle Families and Resilience of Dynamical Networks, pp. 5201-5206.
Bianchin, Gianluca; Delvenne, Jean-Charles

16:00-16:15
FrC12.3
The Reactability of Discrete Time Systems, pp. 5207-5212.
Nazerian, Amirhossein; Phillips, David; Frasca, Mattia; Sorrentino, Francesco

16:15-16:30
FrC12.4
Neural Network Learning-Based Control for Nonlinear Systems with Time-Varying Powers, pp. 5213-5218.
Liu, Jianan; Zhao, Long; Li, Shihua; Liu, Rongjie

16:30-16:45
FrC12.5
Dunyak, Alexander; Caines, Peter E.

FrC13

Richmond Mechatronic Systems (Regular Session)

Chair: Gordon, David Carl
University of Alberta

Co-Chair: Al-Janaidah, Mohammad
University of Guelph

15:30-15:45
FrC13.1
Motion Controller Design with Automatic Loop Shaping and Minimum Tracking Errors, pp. 5226-5231.
Hsiao, Tesheng; Liu, Chih-Wei

15:45-16:00
FrC13.2
Gordon, David Carl; Winkler, Alexander; Bedei, Julian; Schaber, Patrick; Pischinger, Stefan; Andert, Jakob; Koch, Charles Robert

16:00-16:15
FrC13.3
Zhou, Xingyuan; Paik, Peter; Atashzar, S. Farokh
16:15-16:30 FrC13.4
Time-Aware Non-Uniform Rational Basis Spline (NURBS), pp. 5244-5249.
Al-Rawashdeh, Yazan Mohammad; Heertjes, Marcel; Al Janaideh, Mohammad

16:30-16:45 FrC13.5
Nonsmooth-Optimization-Based Bandwidth Optimal Control for Precision Motion Systems, pp. 5250-5257.
Wu, Jingjie; Zhou, Lei

16:45-17:00 FrC13.6
Kanagalingam, Gajanan; Hoffmann, Kathrin; Baumgärtner, Jan; Bertschinger, Bernd Markus; Reichelt, Stephan; Fleischer, Jürgen; Sawodny, Oliver

FrC14 Wellington Biological Systems (Regular Session)

Chair: Punta, Elisabetta
Co-Chair: Stolpe, Phoebus Raphael

15:30-15:45 FrC14.1
Neuromimetic Dynamic Networks with Hebbian Learning, pp. 5264-5269.
Sun, Zexin; Baillieul, John

15:45-16:00 FrC14.2
Model Based Regulation of Thyroid Hormones in Patients with Hypothyroidism, pp. 5270-5275.
Srinivasan, Vittal; Zak, Stanislaw H.; Mariash, Cary

16:00-16:15 FrC14.3
Alamir, Mazen

16:15-16:30 FrC14.4
Experimental Modelling and Variable Structure Control for Cyborg Cockroaches, pp. 5282-5287.
Caforio, Antonio; Punta, Elisabetta; Morishima, Keisuke

16:30-16:45 FrC14.5
Robust Optimal Control of Nonlinear Systems Via Homotopy Shooting Method, pp. 5288-5293.
Stein, Adrian; Singh, Tarunraj

16:45-17:00 FrC14.6
Output-Prediction Based Nonlinear Control of a Class of Neuro-Musculoskeletal Systems, pp. 5294-5300.
Stolpe, Phoebus Raphael; Morel, Yannick

FrC15 Yonge Distributed Parameter Systems (Regular Session)

Chair: Koga, Shumon Honda Research and Development
Co-Chair: Xu, Xiaodong University of Texas at Austin

15:30-15:45 FrC15.1
Event-Triggered Control of Neuron Growth with Actuation at Soma, pp. 5301-5306.
Demir, Cenk; Koga, Shumon; Krstic, Miroslav

15:45-16:00 FrC15.2
Wu, Ruixin; Yin, Xunyuan; Xu, Xiaodong; Dubljevic, Stevan

16:00-16:15 FrC15.3
Performance-Barrier-Based Event-Triggered Boundary Control of a Class of Reaction-Diffusion PDEs, pp. 5313-5319.
Rathnayake, Bhathiya; Diagne, Mamadou; Cortes, Jorge; Krstic, Miroslav

16:15-16:30 FrC15.4
Towards Metachronal Coordination of Coupled Flexible Filaments for Terrestrial Robot Locomotion, pp. 5320-5326.
Spinello, Davide; Konidala, Bhargav

16:30-16:45 FrC15.5
The Exponential Stabilization of a Heat and Piezoelectric Beam Interaction with Static or Hybrid Feedback Controllers, pp. 5327-5332.
Ozer, Ahmet Ozkan; Khalilullah, Sk Md Ibrahim; Rasaq, Uthman
Robust Boundary Stabilization of Stochastic Hyperbolic PDEs, pp. 5333-5338.
Zhang, Yihuai; Auriol, Jean; Yu, Huan

FrC16
Dockside 4
Energy Systems (Regular Session)
Chair: Ellis, University of California, Davis
Co-Chair: Donkers, M.C.F. Eindhoven University of Technology

15:30-15:45
Accounting for the Effects of Probabilistic Uncertainty During Fast Charging of Lithium-Ion Batteries, pp. 5339-5344.
Kim, Minsu; Schaeffer, Joachim; Berliner, Marc D.; Sagnier, Berta Pedret; Findeisen, Rolf; Braatz, Richard D.

15:45-16:00
Optimal Mode Selection of Multi-Functional Heat Pumps with Simultaneous Water Heating and Space Cooling Mode, pp. 5345-5350.
Kalantar-Neyestanaki, Hossein; Chakraborty, Subhrajit; dela Rosa, Loren; Ellis, Matthew

16:00-16:15
le Roux, Francis Anne; van Beers, Joash; Bergveld, Hendrik Johannes; Donkers, M.C.F.

16:15-16:30
Kazi, Saif R.; Sundar, Kaarthik; Zlotnik, Anatoly

16:30-16:45
Dela Rosa, Loren; Mande, Caton; Ellis, Matthew

FrC17
Dockside 5

Modeling and Identification III (Regular Session)
Chair: Shen, University of Michigan
Co-Chair: Kwon, Texas A&M University

15:30-15:45
Pahari, Silabrata; Shah, Parth; Kwon, Joseph

15:45-16:00
Pahari, Silabrata; Shah, Parth; Lee, Chi Ho; Kwon, Joseph

16:00-16:15
Neural Network Augmented Model Predictive Control: Application to Active Brownian Particles, pp. 5382-5387.
Quah, Titus; Takatori, Sho; Rawlings, James B.

16:15-16:30
Memory Sketching for Data-Driven Prediction of Dynamical Systems, pp. 5388-5393.
Shen, Minghao; Orosz, Gabor

16:30-16:45
Simard, Joel David; Moreschini, Alessio

16:45-17:00
State-Space System Identification Beyond the Nyquist Frequency with Collaborative Non-Uniform Sensing Data, pp. 5400-5405.
Hu, Xiaohai; Chu, Thomas; Chen, Xu

FrC18
Dockside 6
Discrete Event Systems (Regular Session)
Chair: Rudie, Queen's Univ
Co-Chair: Medvedev, Uppsala University

15:30-15:45
Pahari, Silabrata; Shah, Parth; Kwon, Joseph

15:45-16:00
Pahari, Silabrata; Shah, Parth; Lee, Chi Ho; Kwon, Joseph

16:00-16:15
Neural Network Augmented Model Predictive Control: Application to Active Brownian Particles, pp. 5382-5387.
Quah, Titus; Takatori, Sho; Rawlings, James B.

16:15-16:30
Memory Sketching for Data-Driven Prediction of Dynamical Systems, pp. 5388-5393.
Shen, Minghao; Orosz, Gabor

16:30-16:45
Simard, Joel David; Moreschini, Alessio

16:45-17:00
State-Space System Identification Beyond the Nyquist Frequency with Collaborative Non-Uniform Sensing Data, pp. 5400-5405.
Hu, Xiaohai; Chu, Thomas; Chen, Xu

151
<table>
<thead>
<tr>
<th>Time</th>
<th>FrC18.1</th>
<th>FrC18.2</th>
<th>FrC18.3</th>
<th>FrC18.4</th>
<th>FrC18.5</th>
<th>FrC18.6</th>
<th>FrC19.1</th>
<th>FrC19.2</th>
<th>FrC19.3</th>
<th>FrC19.4</th>
<th>FrC19.5</th>
<th>FrC19.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:45-16:00</td>
<td>Fatemeh; Imani, Mahdi</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>FrC19.3</td>
<td>FrC19.4</td>
<td>FrC19.5</td>
<td>FrC19.6</td>
<td>FrC20.1</td>
<td>FrC20.2</td>
<td>FrC20.3</td>
<td>FrC20.4</td>
<td>FrC20.5</td>
<td>FrC20.6</td>
<td>FrC20.7</td>
<td>FrC20.8</td>
</tr>
</tbody>
</table>
Characterization Via the Least-Squares Principle, pp. 5498-5504.

Feng, Qian; Seuret, Alexandre; Nguang, Sing Kiong; Xiao, Feng

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:15-16:30</td>
<td>FrC20.4</td>
</tr>
</tbody>
</table>

Delay-Induced Watermarking for Detection of Replay Attacks in Linear Systems, pp. 5505-5510.

Somarakis, Christoforos; Goyal, Raman; Noorani, Erfan; Rane, Shantanu

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-16:45</td>
<td>FrC20.5</td>
</tr>
</tbody>
</table>

Adaptive Trajectory Synchronization with Time-Delayed Information, pp. 5511-5516.

Bhattacharya, Rounak; Guthikonda, Vrithik Raj; Dani, Ashwin

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-16:45</td>
<td>FrC20.5</td>
</tr>
</tbody>
</table>
2024 American Control Conference

AUTHOR INDEX
<table>
<thead>
<tr>
<th>ACC 2024 Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
</tr>
<tr>
<td>Duraš, Antun.................. WeB20.5 1204</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Aali, Mohammad............... FrB01.3 4026</td>
</tr>
<tr>
<td>Abbas, Waseem................. WeA01.5 27</td>
</tr>
<tr>
<td>Abdallah, Chaouki T......... WeA02.16 220</td>
</tr>
<tr>
<td>Abdelazim, Eman.............. FrB14.1 4512</td>
</tr>
<tr>
<td>Abdelrahim, Mahmoud.......... FrB18.5 4681</td>
</tr>
<tr>
<td>Abdelraouf, Hassan........... ThC13.2 3208</td>
</tr>
<tr>
<td>Abdi, Hossein............... WeC12.3 1652</td>
</tr>
<tr>
<td>Abdi Ghani, Hasan........... FrB20.4 4747</td>
</tr>
<tr>
<td>Abdou Ahmed, Marwan.......... FrC08.2 5061</td>
</tr>
<tr>
<td>Abdullah, Fahim.............. FrB06.2 4216</td>
</tr>
<tr>
<td>Abdurahman, Nihal............ WeB13.2 925</td>
</tr>
<tr>
<td>Abootorabi, Seyedalireza..... WeB16.1 1024</td>
</tr>
<tr>
<td>Abramovicz, Daniel Y......... ThB03.2 2110</td>
</tr>
<tr>
<td>Abu Ajamieh, Ihab............ FrA03.10 3815</td>
</tr>
<tr>
<td>Abudia, Moad................ WeB01.1 504</td>
</tr>
<tr>
<td>Acikmese, Behcet............. WeC17.5 1831</td>
</tr>
<tr>
<td>Adams, James J............... WeA03.14 332</td>
</tr>
<tr>
<td>Adams, Thomas................. FrB12.1 4434</td>
</tr>
<tr>
<td>Adams, Zachary............... WeC04.3 1361</td>
</tr>
<tr>
<td>Adetola, Veronica............ ThB16.5 2580</td>
</tr>
<tr>
<td>Adibi, Arman................ WeA01.14 80</td>
</tr>
<tr>
<td>Adjerid, Hamza................ ThC15.5 3308</td>
</tr>
<tr>
<td>Adler, Aviv................... ThC02.2 2796</td>
</tr>
<tr>
<td>Adrian Wing-Keung, Law....... ThC08.3 3025</td>
</tr>
<tr>
<td>Aenungula, Sakthi Prasanth... FrB12.1 4434</td>
</tr>
<tr>
<td>Afghah, Fatemeh.............. WeB03 CC</td>
</tr>
<tr>
<td>Aghaeeyan, Azadeh............ WeB11.2 851</td>
</tr>
<tr>
<td>Aghyourli, Zalat, Jill....... WeA03.3 259</td>
</tr>
<tr>
<td>Aguier, A. Pedro............. FrB02.2 4058</td>
</tr>
<tr>
<td>Aguilar, Luis T............... WeB15.1 988</td>
</tr>
<tr>
<td>Aguilar-Orduña, Mario Andrés WeC04.5 4930</td>
</tr>
<tr>
<td>Aguilar-Orduña, Mario Andrés ThC06.5 2971</td>
</tr>
<tr>
<td>Ahmad, Obaid Ullah........... WeA01.5 27</td>
</tr>
<tr>
<td>Ahmad, Nisar................ WeA04.12 454</td>
</tr>
<tr>
<td>Ahmed, Qadeer................ FrC07.2 5024</td>
</tr>
<tr>
<td>Ahmed Ali, Sofiane........... FrB20.4 4747</td>
</tr>
<tr>
<td>Ahn, Hyunjin................ WeB07.3 731</td>
</tr>
<tr>
<td>Ainouz, Samia................. FrB20.4 4747</td>
</tr>
<tr>
<td>Ait Oufroukh, Naima.......... WeB04.1 614</td>
</tr>
<tr>
<td>Ajagekar, Akshay............. WeA02.3 129</td>
</tr>
<tr>
<td>Ajeleye, Daniel............... FrC09.5 5119</td>
</tr>
<tr>
<td>Ajourou, Amir................ ThC01.4 2772</td>
</tr>
<tr>
<td>Akbarnezhad, Mahdis.......... ThC02.2 2796</td>
</tr>
<tr>
<td>Akella, Maruthi............... ThB01.6 2053</td>
</tr>
<tr>
<td>Akgun, Orhan Eren............ ThB02 CC</td>
</tr>
<tr>
<td>Akundi, Sahithi Srijana....... ThP01.43 2022</td>
</tr>
<tr>
<td>Al Janaideh, Mohammad......... ThB03 CC</td>
</tr>
<tr>
<td>Al Jarrah, Mohammad.......... WeC20.3 1921</td>
</tr>
<tr>
<td>Al-Rawashdeh, Yazen Mohammad WeB03.6 2134</td>
</tr>
<tr>
<td>Al-Solihat, Mohammed Khair.. ThB03.6 2134</td>
</tr>
<tr>
<td>Al-Tawaha., Ahmad............ FrA01.11 3570</td>
</tr>
<tr>
<td>Alajiji, Fady................ FrB05.1 4170</td>
</tr>
<tr>
<td>Alalabi, Ala................ FrB15.5 4572</td>
</tr>
<tr>
<td>Al Amir, Mazen............... WeC12.6 1664</td>
</tr>
<tr>
<td>Alamo, Teodoru.............. ThB12.6 2446</td>
</tr>
<tr>
<td>Alani, Anil.................. WeB07.1 719</td>
</tr>
<tr>
<td>Alawad, Abdullah............. FrA04.7 3921</td>
</tr>
<tr>
<td>Alberghetti, Mattia.......... ThC05.2 2918</td>
</tr>
<tr>
<td>Alessandri, Angelo........... WeB15.5 1012</td>
</tr>
<tr>
<td>Al-Hajr, Mohammad............ ThB18.3 2636</td>
</tr>
<tr>
<td>Ali, Ali Mohamed............. ThC12.2 3172</td>
</tr>
<tr>
<td>Ali, Kharuzmi................. WeA01.15 86</td>
</tr>
<tr>
<td>Alizadeh, Mahnoosh........... WeC05.4 1404</td>
</tr>
<tr>
<td>Aljanaideh, Khaled........... ThB03.5 2128</td>
</tr>
<tr>
<td>Aljanaideh, Omar............. FrA03.11 3821</td>
</tr>
<tr>
<td>Allen, Brendon C............. WeA01.3 15</td>
</tr>
<tr>
<td>Allen, Mohammed.............. ThC04 CC</td>
</tr>
<tr>
<td>Altiparmak, Hakan............ ThC04.3 2885</td>
</tr>
<tr>
<td>Altiparmak, Hakan............ FrB14 C</td>
</tr>
</tbody>
</table>

157
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allybokus, Zaid</td>
<td>ThB14</td>
<td>2013</td>
</tr>
<tr>
<td>Alleyne, Andrew</td>
<td>ThB14</td>
<td>2013</td>
</tr>
<tr>
<td>Almakhles, Dhafer J</td>
<td>ThB15</td>
<td>2013</td>
</tr>
<tr>
<td>Almadi, Aisha</td>
<td>FrB12</td>
<td>2013</td>
</tr>
<tr>
<td>Alshehri, Khaled</td>
<td>FrA04</td>
<td>2013</td>
</tr>
<tr>
<td>Alsuwaidan, Mohammad</td>
<td>FrC06</td>
<td>2013</td>
</tr>
<tr>
<td>Althoff, Matthias</td>
<td>FrB19</td>
<td>2013</td>
</tr>
<tr>
<td>Ames, Aaron D</td>
<td>WeA04</td>
<td>2013</td>
</tr>
<tr>
<td>Anderson, Brian D</td>
<td>FrB11</td>
<td>2013</td>
</tr>
<tr>
<td>Anderson, James</td>
<td>FrB01</td>
<td>2013</td>
</tr>
<tr>
<td>Anderson, Logan</td>
<td>WeC04</td>
<td>2013</td>
</tr>
<tr>
<td>Andersson, Sean B</td>
<td>ThC18</td>
<td>2013</td>
</tr>
<tr>
<td>Andert, Jakob</td>
<td>FrC13</td>
<td>2013</td>
</tr>
<tr>
<td>Andreotti, Amedeo</td>
<td>WeC16</td>
<td>2013</td>
</tr>
<tr>
<td>Andjulaj, Frank</td>
<td>FrB16</td>
<td>2013</td>
</tr>
<tr>
<td>Ankalugari, Rahul Yaday</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Anubi, Olugbenga Moses</td>
<td>FrB10</td>
<td>2013</td>
</tr>
<tr>
<td>Aponte Rengifo, Oscar Emilio</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Archila Cruz, Oscar Fabian</td>
<td>ThB01</td>
<td>2013</td>
</tr>
<tr>
<td>Ardell, Jeffery</td>
<td>FrB14</td>
<td>2013</td>
</tr>
<tr>
<td>Arezki, Hasni</td>
<td>WeC04</td>
<td>2013</td>
</tr>
<tr>
<td>Ariola, Marco</td>
<td>FrB19</td>
<td>2013</td>
</tr>
<tr>
<td>Aschemann, Harald</td>
<td>WeB12</td>
<td>2013</td>
</tr>
<tr>
<td>Asghar, Ahmad Bilal</td>
<td>WeA03</td>
<td>2013</td>
</tr>
<tr>
<td>Asinger, Patrick</td>
<td>WeB08</td>
<td>2013</td>
</tr>
<tr>
<td>Askari, Iman</td>
<td>WeB06</td>
<td>2013</td>
</tr>
<tr>
<td>Askarian, Alireza</td>
<td>ThC06</td>
<td>2013</td>
</tr>
<tr>
<td>Aspeel, Antoine</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Astolfi, Alessandro</td>
<td>ThC17</td>
<td>2013</td>
</tr>
<tr>
<td>Atallah, Ahmed</td>
<td>FrC04</td>
<td>2013</td>
</tr>
<tr>
<td>Atanasov, Nikolay</td>
<td>WeA03</td>
<td>2013</td>
</tr>
<tr>
<td>Atashzor, S. Farokh</td>
<td>FrC13</td>
<td>2013</td>
</tr>
<tr>
<td>Athalye, Surabhi</td>
<td>FrA02</td>
<td>2013</td>
</tr>
<tr>
<td>Atkins, Ella M</td>
<td>ThC11</td>
<td>2013</td>
</tr>
<tr>
<td>Au, Kwok Wai Samuel</td>
<td>FrA03</td>
<td>2013</td>
</tr>
<tr>
<td>Aunedi, Marko</td>
<td>WeB06</td>
<td>2013</td>
</tr>
<tr>
<td>Auriol, Jean</td>
<td>FrC15</td>
<td>2013</td>
</tr>
<tr>
<td>Avila, Ethan</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Awan, Asad Ullah</td>
<td>ThC19</td>
<td>2013</td>
</tr>
<tr>
<td>Axten, Rachel</td>
<td>WeC09</td>
<td>2013</td>
</tr>
<tr>
<td>Ayalew, Getachew Demeissie</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Azad, Saeed</td>
<td>ThB16</td>
<td>2013</td>
</tr>
<tr>
<td>Azizan, Navid</td>
<td>FrB09</td>
<td>2013</td>
</tr>
<tr>
<td>Babaei, Mahmoush</td>
<td>FrC05</td>
<td>2013</td>
</tr>
<tr>
<td>Babaei Pourkargar, Davood</td>
<td>WeA01</td>
<td>2013</td>
</tr>
<tr>
<td>Badam, Vasant Reddy</td>
<td>FrA02</td>
<td>2013</td>
</tr>
<tr>
<td>Bagamos, Dmitry</td>
<td>ThC01</td>
<td>2013</td>
</tr>
<tr>
<td>Bageshwar, Vibhor</td>
<td>WeC19</td>
<td>2013</td>
</tr>
<tr>
<td>Bagheri, Amirsalar</td>
<td>WeA01</td>
<td>2013</td>
</tr>
<tr>
<td>Bagheri, Amirsalar</td>
<td>WeA01</td>
<td>2013</td>
</tr>
<tr>
<td>Bagheri, Amirsalar</td>
<td>ThPo1</td>
<td>2013</td>
</tr>
<tr>
<td>Baharisingari, Nasim</td>
<td>WeA01</td>
<td>2013</td>
</tr>
<tr>
<td>Bahati, Gilbert</td>
<td>FrB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bahavarnia, MirSaleh</td>
<td>ThB17</td>
<td>2013</td>
</tr>
<tr>
<td>Bahoo, Yeganeth</td>
<td>WeA03</td>
<td>2013</td>
</tr>
<tr>
<td>Bahrami, Somayyeh</td>
<td>WeB02</td>
<td>2013</td>
</tr>
<tr>
<td>Bai, He</td>
<td>WeB20</td>
<td>2013</td>
</tr>
<tr>
<td>Baillieu, John</td>
<td>FrC14</td>
<td>2013</td>
</tr>
<tr>
<td>Bainier, Gustave</td>
<td>WeC13</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Bajelani, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bajelani, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
<tr>
<td>Babalala, Mohammad</td>
<td>FrC09</td>
<td>2013</td>
</tr>
<tr>
<td>Bakker, Craig</td>
<td>WeB21</td>
<td>2013</td>
</tr>
<tr>
<td>Bakolas, Efstatios</td>
<td>WeA02</td>
<td>2013</td>
</tr>
</tbody>
</table>
D

Daafouz, Jamal.................. FrB17.4 4645
Dai, Min............................. ThC03.1 2830
Dai, Ran............................. ThB05 CC
Dai, Xiaobing....................... WeB02.4 560
Dal Fabbro, Nicolò................. ThB02.5 2090
Dall’Anese, Emiliano.............. ThC05.3 2924
Damiani, Angelo.................. WeA01.2 8
Dani, Ashwin....................... FrC20 C
Daniel, Thomas.................... FrC05.4 4960
Danielson, Claus.................. WeB13 CC
Dantas, Beatriz.................... ThPo1.43 2022
Daoutidis, Prodromos............. FrB12.5 4460
Darabi, Atefe....................... FrB11.2 4402
Darir, Hussein...................... WeA04.13 462
Das, Goutam......................... WeA02.18 233
Das, Pranoy......................... FrA01.9 3557
Datar, Adwait....................... WeB15.6 1018
Dave, Aditya Deepak.............. WeB01.6 536
Davies, Alexander............... FrC05.6 4974
Davino, Daniele................... FrB03.3 4102
Davison, Daniel E................ FrC08.3 5067
Davoody, Mohammadreza........... WeC02 CC
De Castro, Ricardo............... WeB06 O
De Keyser, Robin M.C.............. FrA04.2 3752
De Queiroz, Marcio............... ThB01.2 2092
De Silva, Oscar..................... ThB03.4 2122
De Vries, Bert...................... ThC01.3 2766
Decardi-Nelson, Benjamin........ WeA02.3 129
Del Duca, Alessandro............. WeC16.5 1801
Cecha, Christian.................. ThC17.1 3340
Chao, Kyungwhan................... FrA02.2 3643
Chi, Jian.......................... ThPo1.13 1996
Chowdhury, Dhrubajit............. WeC20.5 1933
Christofides, Panagiotis D........ FrB06.2 4216
Chryssafinos, Konstantinos........ ThC15.1 3284
Chu, Jian.......................... FrC03.5 4895
Chu, Thomas....................... WeC05.6 1417
Chu, Xiangyu....................... FrC17.6 5400
Chuang, Che-Jung.................. WeA03.6 279
Chung, Chung Choo............... FrB17.2 4631
Chung, Wooyoung................... WeA04.10 439
Cichella, Venanzio................ WeC05.3 1398
Coogan, Samuel..................... WeC03 CC
Como, Giacomo..................... FrB11.4 4416
Cooper, Samuel..................... WeC03 CC
Coraggio, Marco................... FrB18.3 4669
Corbett, Brandon.................. WeC01.4 1269
Corbin, Nicholas.................. ThB15.1 2521
Cortes, Jorge...................... ThC05.3 2924
Cottrell, Matthew............... FrB06.3 4224
Cowell, Joseph...................... ThC15.3 5313
Cortez, Karla Lorena.............. FrB02.2 4058
Cosentino, Carlo................... FrB19.5 4717
Cothenr, Liliaokeawawa........... ThC05.3 2924
Coursey, Austin................... WeC09.3 1543
Cowgill, Raghvendra V............ WeA01.12 68
Craig, Lisa......................... WeA03.10 306
Cregg, Liam......................... FrB05.1 4170
Crevecoeur, Guillaume............. WeA04.5 408
Crossno, Jesse..................... FrA01.1 3505
Crouse, Steven..................... WeB20.2 1186
Csomay-Shanklin, Noel............. ThC18.3 3383
Cucuzzella, Michele.............. ThB18.1 2624
Cui, Xiaofan....................... WeA04.15 474
Cunis, Torbjorn.................... FrA04.16 3980
Czuprynski, Kenneth............. FrC07.4 5036
Del Favero, Simone
Del Vecchio, Domitilla
Dela Rosa, Loren
Ding, Zihan
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Di Cairano, Stefano
Dey
Dey
Demetriou, Michael A.
Dighe, Anish Vikas
Dinarogonas, Dimos V.
Ding, Fan
Ding, Arnav
Dey, Shawn
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Delattre, Cédric
Delvenne, Jean-Charles
Demir, Cenk
Demirci, Yunus emre
Demkowicz, Michael
Demonte Gonzalez, Tania
Denke, Tewodros Lemma
Deniz, Meryem
Dennis, Miriam
Deshpande, Vedang M.
Dey, Arnav
Dey, Satadru
Di Bernardo, Mario
Di Cairano, Stefano
Diagne, Mamadou
Dietmayer, Klaus Christian Jürgen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ding, Fan
Ding, Haochen
Ding, Zihan
Dixon, Warren E.
Ekanayake, Lahuru ThPo1.24 2007 Fazlyab, Mahyar FrA01.17 3610
El-Farra, Nael H WeC14.4 1726 Fekih, Aefi WeB02.3 554
El-Kebir, Hamza FrB15.1 4548 Feng, Qian FrC11.5 5189
Eldardiry, Hoda FrC06.1 4980 Feng, Shuang ThC21.4 3498
Elliott, D. Sawyer ThB05.5 2200 Feng, Zhao FrB03.2 4096
Elliott, Ryan ThC19.1 3411 Fernandes, Keegan FrC08.3 5067
Ellis, Matthew WeC14.4 1726 Feron, Eric ThC13.2 3208
ение, Lahiru 17 24 Ferrante, Francesco WeB11.6 875
Ekanayake, Lahiru ThC10.3 3100 Ferrara, Antonella FrC08.6 5088
Fagnani, Fabio ThC11.1 3124 Ferrari-Trecate, Giancarlo ThB12.3 2426
Fabiani, Filippo FrB09 0 Fidkowski, Krzysztof WeC10.1 1568
Fagiano, Lorenzo WeB15.4 1006 Fiedler, Christian FrC06.6 5010
Fagnani, Fabio FrB11.4 4416 Fiero, Rafael WeC13.4 1689
Fainekos, Georgios WeA03.16 344 Fivel, Dimitar P ThC17.3 3352
Fairbanks, James FrC02.3 4850 Findeisen, Rolf WeB08.2 763
Fairchild, Preston WeB14.1 957 WeC12.2 1646
Faisa, Altaf FrB17.5 4651 ThC14.2 3251
Falco, Gregory ThC09.2 3055 Fitzsimmons, Maxwell FrB21.5 4789
Fallin, Brandon FrB11.5 4422 Fleischer, Jürgen FrC13.6 5258
Fan, Shicai WeC08.3 1506 Fleming, Paul WeB16 O
Fan, Wenhui WeB12.6 911 Flores, Gerardo FrB03.4 4108
Fang, Huazhen WeB06.1 687 Fogelquist, Jackson WeB06 O
............... WeC21.3 1959 WeC06 O
................. WeC06.1 1329 WeC06.3 1435
............... WeC19.2 1879 WeC21 O
............... ThC14.6 3276 ThB06 CC
................. WeA03.16 344 ThB06 O
................. ThC11.1 3124 ThC21 O
................. FrC02.3 4850 Ford, Bryce FrA01.7 3545
Fairbanks, James FrC02.3 4850 Fotiadis, Filippos FrA02.12 3704
Fairchild, Preston WeB14.1 957 FrC02.1 4838
Faisa, Altaf FrB17.5 4651 Fourati, Hassen WeB04.4 632
Falco, Gregory ThC09.2 3055 Franca dos Santos, Geovana WeC13.1 1670
Fallin, Brandon FrB11.5 4422 Franceschetti, Massimo FrB01.5 4038
Fan, Shicai WeC08.3 1506 Francisco, Mario ThPo1.38 *
Fan, Wenhui WeB12.6 911 Franze, Giuseppe ThC12.6 3196
Fang, Huazhen WeB06.1 687 Frasca, Mattia FrC12.3 5207
............... WeC03.4 1329 Freeman, Christopher T ThC01.6 2784
............... WeC21.1 1946 FrC01.5 4825
............... WeC17.3 1819 Fregene, Kingsley C WeP1.1 1
Farago, Francois ThC09.6 3081 Frew, Eric W ThB04.1 2140
Faraj, Ramzi ThPo1.9 1992 Fribourg, Laurent WeB12.4 899
Farakhor, Amir WeB06.1 687 Fridovich-Keil, David WeA03.18 360
Farinelli, Alessandro ThB11.5 2399 Fried, Jonathan FrA03.13 3833
Farnam, Arash WeA04.5 408 Frigge, Anna Franziska FrB14 CC
Faros, Ioannis WeB01.6 536 FrB14.4 4530
Farrell, Jay A WeC04.5 1373 Frisch, Daniel WeB04.2 620
Farsi, Milad WeA04.5 408 Frost, Damien Francis WeB06.5 713
Farzan, Siavash FrA03.4 3775 Frye, Michael ThPo1.39 2019
Fateh, Fariba ThPo1.31 * Fu, Li-Chen WeA03.6 279
Fathy, Hosam K FrB14.1 4512 FrB08.5 4308
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuady Emzir, Muhammad</td>
<td>WeC20.1</td>
<td>1909</td>
</tr>
<tr>
<td>Gaggero, Mauro</td>
<td>WeB15.5</td>
<td>1012</td>
</tr>
<tr>
<td>Gagnano, Mauro</td>
<td>ThPo1.18</td>
<td>2001</td>
</tr>
<tr>
<td>Gagyi, Manav</td>
<td>FrB09.4</td>
<td>4339</td>
</tr>
<tr>
<td>Gal, Eliklilm</td>
<td>WeC19.5</td>
<td>1897</td>
</tr>
<tr>
<td>Galjjar, Aatam</td>
<td>ThC08.6</td>
<td>3043</td>
</tr>
<tr>
<td>Galle, Alexander J.</td>
<td>WeB16.2</td>
<td>1030</td>
</tr>
<tr>
<td>Galup, Ethan</td>
<td>WeA04.1</td>
<td>382</td>
</tr>
<tr>
<td>Galuppi, Giacomo</td>
<td>WeB08.2</td>
<td>763</td>
</tr>
<tr>
<td>Gancache, Corey</td>
<td>FrB07.1</td>
<td>4242</td>
</tr>
<tr>
<td>Gama, Marco</td>
<td>ThC02.4</td>
<td>2809</td>
</tr>
<tr>
<td>Gambrell, Oliver</td>
<td>FrA04.10</td>
<td>3941</td>
</tr>
<tr>
<td>Gampa, Varun</td>
<td>FrA03.4</td>
<td>3775</td>
</tr>
<tr>
<td>Gan, Die</td>
<td>WeC04.4</td>
<td>1367</td>
</tr>
<tr>
<td>Gans, Nicholas</td>
<td>FrA03.1</td>
<td>3752</td>
</tr>
<tr>
<td>Gao, Chenxi</td>
<td>ThB11.4</td>
<td>2393</td>
</tr>
<tr>
<td>Gao, Feng</td>
<td>WeC21.4</td>
<td>1965</td>
</tr>
<tr>
<td>Gao, Han</td>
<td>WeB03.4</td>
<td>594</td>
</tr>
<tr>
<td>Gao, Xinrui</td>
<td>FrB12.3</td>
<td>4446</td>
</tr>
<tr>
<td>Gao, Xinzhou</td>
<td>ThB12.2</td>
<td>2420</td>
</tr>
<tr>
<td>Gao, Yan</td>
<td>WeA02.17</td>
<td>226</td>
</tr>
<tr>
<td>Gao, Yulong</td>
<td>ThB14.1</td>
<td>2482</td>
</tr>
<tr>
<td>Gao, Zhenyu</td>
<td>ThB07.1</td>
<td>2248</td>
</tr>
<tr>
<td>Garagic, Denis</td>
<td>WeA04.11</td>
<td>447</td>
</tr>
<tr>
<td>Garcia, Eloy</td>
<td>WeB02.1</td>
<td>542</td>
</tr>
<tr>
<td>Garcia Alcantara, Omar Alejandro</td>
<td>ThC10.3</td>
<td>3100</td>
</tr>
<tr>
<td>Ghosh, Bijoy</td>
<td>FrA03.3</td>
<td>3768</td>
</tr>
<tr>
<td>Ghosh, Sanchita</td>
<td>ThB06.5</td>
<td>2236</td>
</tr>
<tr>
<td>Christ, Robert</td>
<td>ThC02.3</td>
<td>2802</td>
</tr>
<tr>
<td>Gianello, Maria Victoria</td>
<td>ThC03.2</td>
<td>2838</td>
</tr>
<tr>
<td>Gibart, Jules</td>
<td>ThC09.6</td>
<td>3081</td>
</tr>
<tr>
<td>Gifford, Robert</td>
<td>FrB19.1</td>
<td>4693</td>
</tr>
<tr>
<td>Gil, Stephanie</td>
<td>ThB02</td>
<td>C</td>
</tr>
<tr>
<td>Girard, Anouch</td>
<td>WeA03.7</td>
<td>285</td>
</tr>
<tr>
<td>Gobemun, A.</td>
<td>WeC09.5</td>
<td>3074</td>
</tr>
<tr>
<td>Glushchenko, Anton</td>
<td>ThC20.5</td>
<td>3473</td>
</tr>
<tr>
<td>Goçmen, Tuğçe</td>
<td>WeB16.6</td>
<td>1057</td>
</tr>
<tr>
<td>Goel, Ankit</td>
<td>ThB10.2</td>
<td>2344</td>
</tr>
<tr>
<td>Gokhale, Melika</td>
<td>FrA03.14</td>
<td>3941</td>
</tr>
<tr>
<td>Gomaa, Mahmoud A.</td>
<td>ThB02.1</td>
<td>2060</td>
</tr>
<tr>
<td>Gordon, David Carles</td>
<td>FrC13</td>
<td>C</td>
</tr>
<tr>
<td>Gómez-León, Brian Camilo</td>
<td>ThC06.5</td>
<td>2971</td>
</tr>
<tr>
<td>Goncalves, Jorge</td>
<td>ThPo1.4</td>
<td>1987</td>
</tr>
<tr>
<td>Gong, Zheng</td>
<td>ThB14.4</td>
<td>2501</td>
</tr>
<tr>
<td>Goossens, Kees</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>Gordon, David Carles</td>
<td>FrC13</td>
<td>C</td>
</tr>
<tr>
<td>Gorsch, David</td>
<td>FrC07.1</td>
<td>5016</td>
</tr>
<tr>
<td>Goshtasbi, Alireza</td>
<td>WeB06.2</td>
<td>695</td>
</tr>
<tr>
<td>Gostin, Raymond</td>
<td>ThB04.6</td>
<td>2170</td>
</tr>
<tr>
<td>Goswami, Bhavya Giri</td>
<td>WeA03.13</td>
<td>325</td>
</tr>
<tr>
<td>Goswami, Dip</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>Gould, Brendan</td>
<td>WeC11.5</td>
<td>1628</td>
</tr>
<tr>
<td>Goutham, Mithun</td>
<td>WeB10.6</td>
<td>839</td>
</tr>
<tr>
<td>Govind Raju, Sathya Aswath</td>
<td>FrB07.2</td>
<td>4248</td>
</tr>
<tr>
<td>Goyal, Raman</td>
<td>WeC20.5</td>
<td>1933</td>
</tr>
<tr>
<td>Ghabcheloo, Reza</td>
<td>WeC12.3</td>
<td>1652</td>
</tr>
<tr>
<td>Ghaeminezhad, Nourallah</td>
<td>ThB06.2</td>
<td>2218</td>
</tr>
<tr>
<td>Ghanbarian, Behzad</td>
<td>WeA01.2</td>
<td>1</td>
</tr>
<tr>
<td>Ghaseemi, Masood</td>
<td>FrC07</td>
<td>C</td>
</tr>
<tr>
<td>Ghezelbash, Azam</td>
<td>ThPo1.17</td>
<td>2000</td>
</tr>
<tr>
<td>Ghimire, Donipolo</td>
<td>ThPo1.37</td>
<td>2018</td>
</tr>
<tr>
<td>Ghimire, Mukesh</td>
<td>WeA01.10</td>
<td>56</td>
</tr>
<tr>
<td>Ghorbani, Majid</td>
<td>WeA04.5</td>
<td>408</td>
</tr>
<tr>
<td>Ghoreishi, Sheyde Fatemeh</td>
<td>FrA04.8</td>
<td>3927</td>
</tr>
<tr>
<td>Ghoz, Wei</td>
<td>FrC19</td>
<td>CC</td>
</tr>
<tr>
<td>Ghosh, Bijoy</td>
<td>FrA03.3</td>
<td>3768</td>
</tr>
<tr>
<td>Ghosh, Sanchita</td>
<td>ThB06.5</td>
<td>2236</td>
</tr>
<tr>
<td>Christ, Robert</td>
<td>ThC02.3</td>
<td>2802</td>
</tr>
<tr>
<td>Gianello, Maria Victoria</td>
<td>ThC03.2</td>
<td>2838</td>
</tr>
<tr>
<td>Gibart, Jules</td>
<td>ThC09.6</td>
<td>3081</td>
</tr>
<tr>
<td>Gifford, Robert</td>
<td>FrB19.1</td>
<td>4693</td>
</tr>
<tr>
<td>Gil, Stephanie</td>
<td>ThB02</td>
<td>C</td>
</tr>
<tr>
<td>Girard, Anouch</td>
<td>WeA03.7</td>
<td>285</td>
</tr>
<tr>
<td>Gobemun, A.</td>
<td>WeC09.5</td>
<td>3074</td>
</tr>
<tr>
<td>Glushchenko, Anton</td>
<td>ThC20.5</td>
<td>3473</td>
</tr>
<tr>
<td>Goçmen, Tuğçe</td>
<td>WeB16.6</td>
<td>1057</td>
</tr>
<tr>
<td>Goel, Ankit</td>
<td>ThB10.2</td>
<td>2344</td>
</tr>
<tr>
<td>Gokhale, Melika</td>
<td>FrA03.14</td>
<td>3941</td>
</tr>
<tr>
<td>Gomaa, Mahmoud A.</td>
<td>ThB02.1</td>
<td>2060</td>
</tr>
<tr>
<td>Gordon, David Carles</td>
<td>FrC13</td>
<td>C</td>
</tr>
<tr>
<td>Gorsch, David</td>
<td>FrC07.1</td>
<td>5016</td>
</tr>
<tr>
<td>Goshtasbi, Alireza</td>
<td>WeB06.2</td>
<td>695</td>
</tr>
<tr>
<td>Gostin, Raymond</td>
<td>ThB04.6</td>
<td>2170</td>
</tr>
<tr>
<td>Goswami, Bhavya Giri</td>
<td>WeA03.13</td>
<td>325</td>
</tr>
<tr>
<td>Goswami, Dip</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>Gould, Brendan</td>
<td>WeC11.5</td>
<td>1628</td>
</tr>
<tr>
<td>Goutham, Mithun</td>
<td>WeB10.6</td>
<td>839</td>
</tr>
<tr>
<td>Govind Raju, Sathya Aswath</td>
<td>FrB07.2</td>
<td>4248</td>
</tr>
<tr>
<td>Goyal, Raman</td>
<td>WeC20.5</td>
<td>1933</td>
</tr>
<tr>
<td>Ghabcheloo, Reza</td>
<td>WeC12.3</td>
<td>1652</td>
</tr>
<tr>
<td>Ghaeminezhad, Nourallah</td>
<td>ThB06.2</td>
<td>2218</td>
</tr>
<tr>
<td>Ghanbarian, Behzad</td>
<td>WeA01.2</td>
<td>1</td>
</tr>
<tr>
<td>Ghaseemi, Masood</td>
<td>FrC07</td>
<td>C</td>
</tr>
<tr>
<td>Ghezelbash, Azam</td>
<td>ThPo1.17</td>
<td>2000</td>
</tr>
<tr>
<td>Ghimire, Donipolo</td>
<td>ThPo1.37</td>
<td>2018</td>
</tr>
<tr>
<td>Ghimire, Mukesh</td>
<td>WeA01.10</td>
<td>56</td>
</tr>
<tr>
<td>Ghorbani, Majid</td>
<td>WeA04.5</td>
<td>408</td>
</tr>
<tr>
<td>Ghoreishi, Sheyde Fatemeh</td>
<td>FrA04.8</td>
<td>3927</td>
</tr>
<tr>
<td>Ghoz, Wei</td>
<td>FrC19</td>
<td>CC</td>
</tr>
<tr>
<td>Ghosh, Bijoy</td>
<td>FrA03.3</td>
<td>3768</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Griffith, Emily</td>
<td>FrC10.1</td>
<td>5125</td>
</tr>
<tr>
<td>Griffith, Tristan</td>
<td>ThC10.4</td>
<td>3106</td>
</tr>
<tr>
<td>Gros, Sebastien</td>
<td>FrB02.1</td>
<td>4050</td>
</tr>
<tr>
<td>Grover, Jaskaran</td>
<td>WeA03.8</td>
<td>292</td>
</tr>
<tr>
<td>Grover, Martha</td>
<td>WeP1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThP1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrP1</td>
<td>CC</td>
</tr>
<tr>
<td>Gu, Chengyang</td>
<td>FrA01.19</td>
<td>3625</td>
</tr>
<tr>
<td>Gu, Xubo</td>
<td>FrC06.2</td>
<td>4986</td>
</tr>
<tr>
<td>Guay, Martin</td>
<td>FrA02.4</td>
<td>3656</td>
</tr>
<tr>
<td>Guglielmi, Roberto</td>
<td>FrB15.6</td>
<td>4579</td>
</tr>
<tr>
<td>Gul, Kursad Metehan</td>
<td>WeC17.5</td>
<td>1831</td>
</tr>
<tr>
<td>Gumussoy, Suat</td>
<td>FrA02.7</td>
<td>3674</td>
</tr>
<tr>
<td>Gunnell, LaGrande</td>
<td>WeC08.4</td>
<td>1512</td>
</tr>
<tr>
<td>Guo, Fanghong</td>
<td>WeA02.11</td>
<td>186</td>
</tr>
<tr>
<td>Guo, Jia</td>
<td>WeC10.4</td>
<td>1586</td>
</tr>
<tr>
<td>Guo, Zehui</td>
<td>WeB11.1</td>
<td>845</td>
</tr>
<tr>
<td>Guo, Ziyi</td>
<td>WeB20.1</td>
<td>1180</td>
</tr>
<tr>
<td>Gupta, Shobhit</td>
<td>ThC07</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThC07.2</td>
<td>2989</td>
</tr>
<tr>
<td></td>
<td>FrB07</td>
<td>CC</td>
</tr>
<tr>
<td>Gupta, Vijay</td>
<td>FrA01.9</td>
<td>3557</td>
</tr>
<tr>
<td>Gurjar, Bhagya Ahir</td>
<td>WeB10.2</td>
<td>815</td>
</tr>
<tr>
<td>Gurpegui, Alba</td>
<td>FrC02</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrC02.4</td>
<td>4858</td>
</tr>
<tr>
<td>Gurses, Yigit</td>
<td>FrC04.1</td>
<td>4907</td>
</tr>
<tr>
<td>Guthikonda, Vrithik Raj</td>
<td>FrC20.5</td>
<td>5511</td>
</tr>
<tr>
<td></td>
<td>FrC03</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrC03.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC11.3</td>
<td>5177</td>
</tr>
<tr>
<td></td>
<td>FrB14</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>FrB17.3</td>
<td>4837</td>
</tr>
<tr>
<td></td>
<td>FrB02.4</td>
<td>4072</td>
</tr>
<tr>
<td></td>
<td>FrA04.18</td>
<td>3993</td>
</tr>
<tr>
<td></td>
<td>ThB19</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThB19.5</td>
<td>2679</td>
</tr>
<tr>
<td></td>
<td>FrB19</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrB19.1</td>
<td>4693</td>
</tr>
<tr>
<td></td>
<td>FrB19.6</td>
<td>4723</td>
</tr>
<tr>
<td></td>
<td>FrB11.5</td>
<td>4422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

166
Lee, Christopher WeA02.16 220 Li, Zhiwen ThC10.1 3088
Lee, Dongsan ThB18 C Li, Zhongkui ThC18.4 3391
 ThB18.2 2630 Li, Zhiquing FrB15.6 4579
Lee, Heoncheol ThPo1.13 1996 Lian, Penglong WeC08.3 1506
Lee, Hyeonjik ThC07.1 2983 Liang, Dingguo WeC08.6 1525
 ThC03.1 2830 Liang, Kaier WeC13.2 1676
Lee, Jaeho FrB09.2 4326 Liang, Shu FrA01.2 3511
 WeA04.3 394 Liao, Yingqian ThB16.2 2558
Lee, Jiayong WeC09.5 1556 Limon, Daniel ThB12.6 2446
Lee, Kooktae WeC03.1 1311 Lin, Chi-Hui WeB17.4 1083
Lee, Richard WeC07.5 1480 Lin, Han WeA02.15 214
Lee, Taeyoung WeC09.2 1537 Lin, Tony FrB09.4 4339
 ThPo1.6 1989 Lin, Wei FrC20.1 5486
 ThPo1.11 1994 Lin, Xiaofeng WeA02.12 192
Lee, Yoonjae WeA02.18 233 Lin, Xiaojun ThC06.4 2964
Leeser, Miriam ThC03.2 2838 Lin, Xinfan WeB06 C
LeGrand, Keith ThC02.5 2816 WeB06 O
Lei, Jinlong WeA02.19 239 WeC06 O
Leibold, Marion FrC07.5 5042 WeC06.3 1435
Leiklo, Attila FrC07.3 5030 WeC21 O
Lendek, Zsofia WeB20.5 1204 WeC21.1 1946
Leok, Melvin WeA03.11 312 ThB06 O
Leonard, Naomi Ehrlich FrB11.6 4428 ThC21 CC
Leonardi, Stefano WeB16.1 1024 ThC21 O
Less, Greg ThPo1.42 * Lin, Yixuan ThC02.4 2809
Levin, Simon FrB11.6 4428 Lin, Yun-Hao WeA04.7 421
Li, Anni WeC07.1 1455 Lin, Zongli WeC16.1 1777
Li, Danyang FrC10.6 5155 ThB13.1 2452
Li, Dewei ThB17.5 2612 ThB13.3 2464
 ThC11.6 3160 Liñán, David A. FrB12.6 4466
Li, Hui Qing ThB07.1 2248 Lindemann, Lars WeA03.2 251
 ThB09.3 2311 FrA01.3 3517
Li, Jin ThB11.4 2393 Lindstrom, Sean FrB09.4 4339
Li, Jing Shuang (Lisa) ThB20.5 2715 Ling, Jie FrB03.2 4096
Li, Jr-Shin FrC06.5 5004 Link, Brian ThC07.1 2983
Li, Na WeC17.2 1813 Lipka, Johannes Bernd ThB06.4 2230
 FrB01.6 4044 Liu, Bing WeC17.1 1807
Li, Nan ThC17.3 3352 Liu, Chang WeB03.4 594
Li, Perry Y. ThC16 O FrA03.5 3783
Li, Qingdong FrA02.1 3637 Liu, Changli WeA03.8 292
Li, Shaoyuan WeB04.6 644 FrB13 C
 WeB17.1 1065 WeB13.4 937
 ThB12.5 2440 ThB19 CC
Li, Shihua FrC12.4 5213 ThB19.4 2672
Li, Wei WeB18.4 1121 FrA01.5 3531
Li, WeiBing ThC10.1 3088 FrA03.15 3847
Li, Wenlong WeC08.6 1525 Liu, Changrong WeA02.13 200
Li, Xianwei WeB17.1 1065 Liu, Chih-Wei FrC13.1 5226
Li, Weizhong WeB17.2 1071 Liu, Ding ThC04.6 2905
Li, Xiao WeA03.7 285 Liu, Feiyang FrB10.5 4384
 FrB07.5 4268 Liu, Guangyi ThC14 O
Li, Xiaofan ThC16.4 3334 ThC14.4 3264
Li, Xiaolei WeC17.3 1819 FrB04 O
Li, Xiny FrB10.5 4384 Liu, Hangxin WeB03.4 594
Li, Yang ThB06.2 2218 Liu, Jay ThPo1.17 2000
Li, Yangge ThC13.3 3215 Liu, Jen Jui WeA03.14 332
Li, Yuanlong ThB13.1 2452 Liu, Ji ThC02.4 2809
 ThB13.3 2464 Liu, Jihan FrC12.4 5213
Marconi, Lorenzo ThB04.3 2152 ……………………………………….. FrA04.2 3891
Mariden, Jason R. FrA01.1 3505 Miller, Jared WeB19.2 1146
Mariash, Cary FrC14.2 5270 Miller, Kristina ThB09.1 2298
Marinho, Yara Quilles ThB18.2 2630 Mills, James K. FrA03.10 3815
Mark, Christoph FrB19.3 4705 Min, Youngjae FrB09.5 4345
Marshall, Walden ThB17.2 2592 Mirafzal, Behrouz ThPo1.31 *
Martin, Christopher WeB18.4 1121 Miranda Colorado, Roger FrC04.5 4930
Martin, Michael FrB05.5 4196 Mirinejad, Hossein ThPo1.26 2009
Martin Xavier, Daniel WeB12.4 899 Mirtaba, Mohammad FrA03.14 3841
Martinez-Piazuelo, Juan ThB01.1 2023 Mishra, Kislaya FrA01.3 15
Martins, Joaquim R.R.A. ThB16.2 2558 Mishra, Kushagra ThC04.3 2885
Martins, Renato WeA01.16 92 Mishra, Richa FrB03 CC
Marvi, Zahra FrB16.3 4599 Mirzadeh, Fatemeh FrB03.1 4090
Marx, Benoit WeC13.6 1701 Mishra, Sandipan ThB11.3 2386
Maske, Harshal WeB12.3 893 Mitra, Arita WeA01.14 80
Mastì, Daniele FrB09 O Mitra, Sayan ThB09.1 2298
 FrB14.4 4530 Mohagheghie, Afagh ThPo1.10 1993
 FrC18 CC Mohajer, Soheil WeB04.5 638
 FrC18.3 5419 Mohajerinin Esfahani, Peyman WeB04.3 626
Matsui, Shoma ThC13.1 3202 Moi, Zihao FrA04.2 388
Mauroy, Alexandre ThPo1.4 1987 Moheimani, S FrA01.15 3598
Mavkov, Bojan WeA01.16 92 Monshizadeh, Nima FrB13.3 4485
Mazo Jr, Manuel WeB04.3 626 Mohammad, Sajid FrB03.3 2116
McCloy, Ryan Josep WeC18.2 1843 Mohammadl, Alireza WeB03.3 2844
Mcke, Sasha M ThPo1.33 2015 Moazeni, Farrah WeB16.3 1038
Medvedev, Alexander V. FrB14 O Moghaddas, Afagh ThPo1.10 1993
 FrB14.4 4530 Mohagheghi, Afagh FrA03.8 3803
 FrC18 CC Mohajer, Soheil WeB04.5 638
 FrC18.3 5419 Mohajerinin Esfahani, Peyman WeB04.3 626
Mehdifar, Farhad ThB13.2 2458 Mohamad, Sajid FrB13.3 4485
Mehlman, Cameron ThC09.2 3055 Mohsen, Mohammad WeB13.2 925
Mei, Jie ThC11.4 3146 Mommadi, Alirezad ThB03.3 2116
Mei, Wenjun WeA04.9 433 Montgomery, Victor WeB13.2 925
Mei, Yu WeB14.1 957 Montazeri, Hedesh FrB11.2 881
Mejari, Manas WeB13.3 931 Mohebbi, S.A. WeC12.5 1658
Meng, Fanwei WeC04.1 1350 Mohemani, S.O. Reza FrB03.1 4090
Meng, Shengya WeC04.1 1350 Mohite, Shivaraj FrB20.6 4759
Meng, Yiming FrB01.2 4020 Mohr, Fabian WeB08.1 749
 FrB21.5 4789 Molloy, Timothy L WeA02.13 200
Menon, Prathyush P WeC15.5 1764 Moroa, Alessio FrB19.5 4717
Merola, Alessio FrB19.5 4717 Morshedi, Sajid FrB03.1 4102
Mertens, Max Bastian WeA01.19 111 Montano, Victor WeB13.2 925
 FrA04.11 3947 Moon, Jihoon ThC12.2 3486
Mertin, Nicholas Frederick Andreas FrC18.5 5433 Montazeri Hedesh, Hamidreza FrB11.2 881
 FrB05 CC Molnar, Tamas G WeB07.5 743
Mesbah, Mehran ThC01.1 2752 Mozaffar, Mehdi WeB13.1 919
Meshkat Alsadat, Shayan WeA01.6 33 Monshizadeh, Nima FrC02.5 4864
Metelli, Alberto Maria WeA01.2 8 Montanaro, Victor WeB13.2 925
Meurer, Thomas WeC15.3 1751 Monteiro, Giselle FrB03.3 4102
Mhaskar, Prashant WeC01.4 1269 Montefusco, Francesco FrB19.5 4717
 FrB12.1 4434 Montefusco, Francesco FrB19.5 4717
 FrC05.3 4954 Montefusco, Francesco FrB19.5 4717
Miao, Wei FrC06.3 4992 Monteiro, Giselle FrB03.3 4102
Michielletto, Giulia WeC09 C Montefusco, Francesco FrB19.5 4717
 WeC09.4 1550 Monteiro, Giselle FrB03.3 4102
 ThC01.1 2752 Moradi, Lee FrC07.1 5016
Mihai, Marcian ThC08.5 3037 Moradian, Hossein ThB05.4 2194
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morales-Cuadra, Evanns</td>
<td>FrA03.20</td>
<td>3879</td>
</tr>
<tr>
<td>Morel, Yannick</td>
<td>FrC14.6</td>
<td>5294</td>
</tr>
<tr>
<td>Moreschini, Alessio</td>
<td>FrC17.5</td>
<td>5394</td>
</tr>
<tr>
<td>Morgansen, Kristi A</td>
<td>ThB04.2</td>
<td>2146</td>
</tr>
<tr>
<td>Nait, Kartik Praful</td>
<td>ThB16.2</td>
<td>2558</td>
</tr>
<tr>
<td>Nair, Girish N</td>
<td>WeA02.13</td>
<td>200</td>
</tr>
<tr>
<td>Nagamune, Ryozo</td>
<td>ThPo1.15</td>
<td>1998</td>
</tr>
<tr>
<td>Naghizadeh, Parinaz</td>
<td>FrC11.4</td>
<td>5183</td>
</tr>
<tr>
<td>Nagpal, Satchit</td>
<td>FrB12.2</td>
<td>4440</td>
</tr>
<tr>
<td>Nam, Nguyen Ngoc</td>
<td>FrC04.6</td>
<td>4936</td>
</tr>
<tr>
<td>Nam, Takumi</td>
<td>WeB02.5</td>
<td>568</td>
</tr>
<tr>
<td>Namikawa, Ryo</td>
<td>ThB13.2</td>
<td>2458</td>
</tr>
<tr>
<td>Namerikawa, Toru</td>
<td>ThB13</td>
<td>C</td>
</tr>
<tr>
<td>Nas, Austin</td>
<td>FrB16</td>
<td>O</td>
</tr>
<tr>
<td>Nasir, Ahmed</td>
<td>FrB18.6</td>
<td>4687</td>
</tr>
<tr>
<td>Nassiri, Samir</td>
<td>FrB13.4</td>
<td>4493</td>
</tr>
<tr>
<td>Navkar, Nikhil Vishwas</td>
<td>WeB13.2</td>
<td>4795</td>
</tr>
<tr>
<td>Nayak, Siddharth</td>
<td>WeA03.9</td>
<td>299</td>
</tr>
<tr>
<td>Nazari, Shima</td>
<td>WeB07</td>
<td>CC</td>
</tr>
<tr>
<td>Nejatbakhsh Esfahani, Hossein</td>
<td>WeC12.5</td>
<td>1658</td>
</tr>
<tr>
<td>Nazerian, Amirhossein</td>
<td>FrC12.3</td>
<td>5207</td>
</tr>
<tr>
<td>Neunda, Enock</td>
<td>ThPo1.16</td>
<td>1999</td>
</tr>
<tr>
<td>Neary, Cyrus</td>
<td>ThC11.2</td>
<td>3130</td>
</tr>
<tr>
<td>Nedich, Angelia</td>
<td>ThB02</td>
<td>O</td>
</tr>
<tr>
<td>Mekhsoudi, Dawaipayan</td>
<td>WeB09.5</td>
<td>797</td>
</tr>
<tr>
<td>Mekiher, Sayak</td>
<td>ThC14.1</td>
<td>3245</td>
</tr>
<tr>
<td>Mukhopadhyay, Snehasi</td>
<td>ThB05.3</td>
<td>2188</td>
</tr>
<tr>
<td>Mulgaleti, Sampath Kumar</td>
<td>WeB13.3</td>
<td>931</td>
</tr>
<tr>
<td>Mulders, Sebastiaan Paul</td>
<td>WeB16</td>
<td>CC</td>
</tr>
<tr>
<td>Mung, Michael</td>
<td>ThC02.3</td>
<td>2802</td>
</tr>
<tr>
<td>Muradore, Riccardo</td>
<td>ThB11</td>
<td>C</td>
</tr>
<tr>
<td>Muratii, Vishnu</td>
<td>FrB18.1</td>
<td>4657</td>
</tr>
<tr>
<td>Muresan, Cristina-Loana</td>
<td>ThC08.5</td>
<td>3037</td>
</tr>
<tr>
<td>Murray, Richard M</td>
<td>ThE1</td>
<td>C</td>
</tr>
<tr>
<td>Mylavanam, Thulasiram</td>
<td>FrA01.9</td>
<td>3557</td>
</tr>
<tr>
<td>N'Doye, Ibrahim</td>
<td>WeA03.4</td>
<td>265</td>
</tr>
<tr>
<td>N'zair, Haider</td>
<td>ThPo1.17</td>
<td>200</td>
</tr>
<tr>
<td>Nadubettu Yadvakumar, Shishir</td>
<td>WeA03.13</td>
<td>325</td>
</tr>
<tr>
<td>Nazerian, Amirhossein</td>
<td>FrC12.3</td>
<td>5207</td>
</tr>
<tr>
<td>Nam, Nguyen Ngoc</td>
<td>FrC04.6</td>
<td>4936</td>
</tr>
<tr>
<td>Namikawa, Ryo</td>
<td>ThB13.2</td>
<td>2458</td>
</tr>
<tr>
<td>Nazari, Shima</td>
<td>WeB07</td>
<td>O</td>
</tr>
<tr>
<td>Nejatbakhsh Esfahani, Hossein</td>
<td>WeC12.5</td>
<td>1658</td>
</tr>
<tr>
<td>Nelson, Andrew</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>Nemeth, Balazs</td>
<td>FrC07.3</td>
<td>5030</td>
</tr>
<tr>
<td>Neubauer, Jeremy</td>
<td>WeB06.2</td>
<td>695</td>
</tr>
<tr>
<td>Newton, Rachel</td>
<td>FrC09.4</td>
<td>5113</td>
</tr>
<tr>
<td>Ng, Wee Shen</td>
<td>FrA03.17</td>
<td>3859</td>
</tr>
<tr>
<td>Ngamlamai, Sirichai</td>
<td>ThPo1.40</td>
<td>2020</td>
</tr>
<tr>
<td>Ngo, Van-Tam</td>
<td>FrA03.6</td>
<td>3791</td>
</tr>
<tr>
<td>Nguang, Sing Kiong</td>
<td>FrC20.3</td>
<td>5498</td>
</tr>
<tr>
<td>Nguyen, Duc Giap</td>
<td>WeC12.1</td>
<td>1640</td>
</tr>
<tr>
<td>Nguyen, Duong</td>
<td>ThC02.1</td>
<td>2790</td>
</tr>
<tr>
<td>Nguyen, Duong</td>
<td>ThC02.1</td>
<td>2790</td>
</tr>
<tr>
<td>Nguyen, Quang Hui</td>
<td>ThPo1.41</td>
<td>2021</td>
</tr>
<tr>
<td>Ni, Jun</td>
<td>WeB12.3</td>
<td>893</td>
</tr>
<tr>
<td>Nicolau, Florentina</td>
<td>FrC09.1</td>
<td>5094</td>
</tr>
<tr>
<td>Nicotra, Marco M</td>
<td>WeC13</td>
<td>C</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Code</td>
<td>Name</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Patnaik, Natasha</td>
<td>ThB21.1</td>
<td>2721</td>
</tr>
<tr>
<td>Patil, Omkar Sudhir</td>
<td>ThC21.3</td>
<td>3492</td>
</tr>
<tr>
<td>Pateley, Elena</td>
<td>ThB18.5</td>
<td>2648</td>
</tr>
<tr>
<td>Pappas, George J</td>
<td>ThB02.5</td>
<td>2090</td>
</tr>
<tr>
<td>Pare, Philip E</td>
<td>FrB11</td>
<td>C</td>
</tr>
<tr>
<td>Paredes, Victor</td>
<td>WeAO4.11</td>
<td>447</td>
</tr>
<tr>
<td>Paredes Salazar, Juan Augusto</td>
<td>WeCO9.5</td>
<td>1556</td>
</tr>
<tr>
<td>Park, Chaneun</td>
<td>WeC20.4</td>
<td>1927</td>
</tr>
<tr>
<td>Park, GeunYoung</td>
<td>FrA02.2</td>
<td>3643</td>
</tr>
<tr>
<td>Park, Gyubin</td>
<td>WeB09.2</td>
<td>778</td>
</tr>
<tr>
<td>Park, Gyunghoon</td>
<td>ThB12.4</td>
<td>2432</td>
</tr>
<tr>
<td>Park, Hyuk</td>
<td>WeB19.5</td>
<td>1164</td>
</tr>
<tr>
<td>Park, Hunsang</td>
<td>ThC17.1</td>
<td>3340</td>
</tr>
<tr>
<td>Park, Jirnak</td>
<td>WeC12.1</td>
<td>1640</td>
</tr>
<tr>
<td>Park, Seho</td>
<td>ThB21.1</td>
<td>2721</td>
</tr>
<tr>
<td>Park, Suyong</td>
<td>WeC12.1</td>
<td>1640</td>
</tr>
<tr>
<td>Parker, Gordon G</td>
<td>ThC16.2</td>
<td>3322</td>
</tr>
<tr>
<td>Parkinson, Christian</td>
<td>FrC08</td>
<td>C</td>
</tr>
<tr>
<td>Parry, Adam</td>
<td>ThB14.3</td>
<td>2494</td>
</tr>
<tr>
<td>Paruchuri, Sai Tej</td>
<td>WeB15.2</td>
<td>994</td>
</tr>
<tr>
<td>Parvada, Hardik</td>
<td>ThB02.3</td>
<td>2074</td>
</tr>
<tr>
<td>Paschalidis, Phevos</td>
<td>FrB01.6</td>
<td>4044</td>
</tr>
<tr>
<td>Paternain, Santiago</td>
<td>ThB11</td>
<td>CC</td>
</tr>
<tr>
<td>Patrignani, Andres</td>
<td>WeA02.4</td>
<td>1299</td>
</tr>
<tr>
<td>Patron, Gabriel David</td>
<td>WeC14.3</td>
<td>1720</td>
</tr>
<tr>
<td>Patterson, Evan</td>
<td>FrC02.3</td>
<td>4850</td>
</tr>
<tr>
<td>Paulson, Joel</td>
<td>WeB08.4</td>
<td>770</td>
</tr>
<tr>
<td>Pavlasek, Natalia</td>
<td>ThB09.3</td>
<td>2311</td>
</tr>
<tr>
<td>Pazzaglia, Paolo</td>
<td>FrB19.3</td>
<td>4705</td>
</tr>
<tr>
<td>Pedari, Yasaman</td>
<td>FrB09.2</td>
<td>4326</td>
</tr>
<tr>
<td>Peet, Matthew M</td>
<td>FrB15.2</td>
<td>4554</td>
</tr>
<tr>
<td>Peixoto, Alessandro Jacoud</td>
<td>FrB16.6</td>
<td>4618</td>
</tr>
<tr>
<td>Pazzaglia, Paolo</td>
<td>FrB19.3</td>
<td>4705</td>
</tr>
<tr>
<td>Park, Chaneun</td>
<td>WeC20.4</td>
<td>1927</td>
</tr>
<tr>
<td>Park, GeunYoung</td>
<td>FrA02.2</td>
<td>3643</td>
</tr>
<tr>
<td>Park, Gyubin</td>
<td>WeB09.2</td>
<td>778</td>
</tr>
<tr>
<td>Park, Gyunghoon</td>
<td>ThB12.4</td>
<td>2432</td>
</tr>
<tr>
<td>Park, Hyuk</td>
<td>WeB19.5</td>
<td>1164</td>
</tr>
<tr>
<td>Parvada, Hardik</td>
<td>ThB02.3</td>
<td>2074</td>
</tr>
<tr>
<td>Paternain, Santiago</td>
<td>ThB11</td>
<td>CC</td>
</tr>
<tr>
<td>Patrignani, Andres</td>
<td>WeA02.4</td>
<td>1299</td>
</tr>
<tr>
<td>Patrignani, Andres</td>
<td>WeA02.4</td>
<td>1299</td>
</tr>
<tr>
<td>Patrignani, Andreas</td>
<td>WeA01.1</td>
<td>2</td>
</tr>
<tr>
<td>Patterson, Evan</td>
<td>FrC02.3</td>
<td>4850</td>
</tr>
<tr>
<td>Paulson, Joel</td>
<td>WeB08.4</td>
<td>770</td>
</tr>
<tr>
<td>Peet, Matthew M</td>
<td>FrB15.2</td>
<td>4554</td>
</tr>
<tr>
<td>Peixoto, Alessandro Jacoud</td>
<td>FrB16.6</td>
<td>4618</td>
</tr>
<tr>
<td>Name</td>
<td>Page 11</td>
<td>Page 12</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Potu Surya Prakash, Nikhil</td>
<td>WeCo3.5</td>
<td>1335</td>
</tr>
<tr>
<td>Poudel, Prakash</td>
<td>WeAo3.10</td>
<td>306</td>
</tr>
<tr>
<td>Poveda, Jorge I.</td>
<td>WeBo5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeBo5.6</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td>ThE1.1</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td>FrB21</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrB21.4</td>
<td>4783</td>
</tr>
<tr>
<td></td>
<td>FrC10.3</td>
<td>5137</td>
</tr>
<tr>
<td>Powell, Kody</td>
<td>WeAo4</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeAo4.1</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>ThBo6.6</td>
<td>2242</td>
</tr>
<tr>
<td>Powell, Nathan</td>
<td>WeCo10.4</td>
<td>1586</td>
</tr>
<tr>
<td></td>
<td>WeCo19.2</td>
<td>1879</td>
</tr>
<tr>
<td></td>
<td>ThCo4.1</td>
<td>2871</td>
</tr>
<tr>
<td></td>
<td>ThCo1.5</td>
<td>3112</td>
</tr>
<tr>
<td>Pozzi, Beniamino</td>
<td>ThBo6.3</td>
<td>2224</td>
</tr>
<tr>
<td>Prabhut, Himanshu</td>
<td>WeAo4.14</td>
<td>468</td>
</tr>
<tr>
<td>Prasad, Rupanjali</td>
<td>WeBo2.0</td>
<td>1186</td>
</tr>
<tr>
<td>Prieur, Christophe</td>
<td>WeBo4.4</td>
<td>632</td>
</tr>
<tr>
<td>Prka‘cin, Vicko</td>
<td>WeBo2.0</td>
<td>1204</td>
</tr>
<tr>
<td>Proskurnikov, Anton V</td>
<td>FrC18.3</td>
<td>5419</td>
</tr>
<tr>
<td>Prossel, Dominik</td>
<td>WeBo4.2</td>
<td>620</td>
</tr>
<tr>
<td>Puig, Vicenc</td>
<td>ThC12.6</td>
<td>3196</td>
</tr>
<tr>
<td>Pulsipher, Joshua</td>
<td>ThPo1.28</td>
<td>2011</td>
</tr>
<tr>
<td>Pumpfrey, Michael Joseph</td>
<td>FrAo3.7</td>
<td>3797</td>
</tr>
<tr>
<td>Punta, Elisabetta</td>
<td>FrC14</td>
<td>C</td>
</tr>
<tr>
<td>Putri, Saskia</td>
<td>WeBo16.3</td>
<td>1038</td>
</tr>
</tbody>
</table>

Q

<table>
<thead>
<tr>
<th>Name</th>
<th>Page 14</th>
<th>Page 15</th>
<th>Page 16</th>
<th>Page 17</th>
<th>Page 18</th>
<th>Page 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qian, Chunjiang</td>
<td>ThPo1.27</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThBo1.8</td>
<td>2642</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qian, William</td>
<td>ThPo1.32</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qian, Yangyang</td>
<td>WeCe16.1</td>
<td>1777</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qin, Junjie</td>
<td>ThCo6.4</td>
<td>2964</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrBo7.6</td>
<td>4275</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qin, Qiaomeng</td>
<td>ThBi1.1</td>
<td>2393</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qin, Zhaoming</td>
<td>WeAo1.12</td>
<td>3954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qiu, Chenyang</td>
<td>WeAo2.8</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qiu, Yiwen</td>
<td>ThCe12.3</td>
<td>3178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qu, Guannan</td>
<td>ThBi17.4</td>
<td>2604</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qu, Zhihua</td>
<td>ThCo1.5</td>
<td>2778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quah, Titus</td>
<td>FrC17.3</td>
<td>5382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan, Yingshuai</td>
<td>FrBo17.2</td>
<td>4631</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrCo4.2</td>
<td>4913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quijano, Nicanor</td>
<td>ThBo1</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThBo1.1</td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinones-Grueiro, Marcos</td>
<td>WeCo9.3</td>
<td>1543</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qureshi, Muzaffar</td>
<td>ThBo10.4</td>
<td>2356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>Name</th>
<th>Page 18</th>
<th>Page 19</th>
<th>Page 20</th>
<th>Page 21</th>
<th>Page 22</th>
<th>Page 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabb, Ethan</td>
<td>ThC13.4</td>
<td>3223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabiee, Pedram</td>
<td>FrAo2.10</td>
<td>3692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajalakshmi, Hugues</td>
<td>ThPo1.41</td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rafter, Abigail</td>
<td>FrBo13.1</td>
<td>4472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahgavan, Aneesh</td>
<td>FrC9.1</td>
<td>5447</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahgunanath, Arvind</td>
<td>WeMo3.9</td>
<td>299</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahn, Christopher D.</td>
<td>ThC21.2</td>
<td>3486</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rai, Ayush</td>
<td>ThBo1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raiissi, Tarek</td>
<td>FrBo2</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajakumar Deshpande, Shreshta</td>
<td>ThC07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajaman, Rajesh</td>
<td>WeBo7.4</td>
<td>737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajarajan, Naveen Kumar</td>
<td>FrBo10.2</td>
<td>4365</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajendran, Sunil Kumar</td>
<td>WeBo14.5</td>
<td>981</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajgopal, Karthik</td>
<td>WeAo3.13</td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajkumar, Suryaprakash</td>
<td>WeBo3.6</td>
<td>608</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajput, Rohit Hiranam</td>
<td>ThC03.2</td>
<td>2838</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rakotondrabe, Micky</td>
<td>ThBo3</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramachandran, Thiagarajan</td>
<td>WeBo21.5</td>
<td>1243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramadan, Mohammad</td>
<td>FrCo4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramakrishnan, Subramanian</td>
<td>FrBo19.4</td>
<td>4711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramasubramanian, Bhaskar</td>
<td>FrBo1.1</td>
<td>4012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramazi, Pouria</td>
<td>WeBo11</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramzani, Alireza</td>
<td>ThCo3.2</td>
<td>2838</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rane, Shantanu</td>
<td>WeBo2.0</td>
<td>1933</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rangaswamy, Dheeraj</td>
<td>ThC05.1</td>
<td>2911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastgofar, Hossein</td>
<td>WeBo7</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rathnapake, Bhathiya</td>
<td>FrC15.3</td>
<td>5313</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratiliff, Lillian J.</td>
<td>FrAo1.9</td>
<td>3557</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratnam, Elizabeth</td>
<td>WeBo19</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravari, Amirhossein</td>
<td>FrC19.2</td>
<td>5453</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravindran, S.S.</td>
<td>ThC15.4</td>
<td>3302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rawlings, James B.</td>
<td>WeCe19.4</td>
<td>1891</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reed, Robert</td>
<td>WeCo17.3</td>
<td>3582</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reichelt, Stephan</td>
<td>ThBo9.6</td>
<td>2331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reichelt, Stephan</td>
<td>FrC13.6</td>
<td>5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td>First Page</td>
<td>Last Page</td>
<td>Authors</td>
<td>Numbers</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Shi, Guangyao</td>
<td>WeC16.3</td>
<td>367</td>
<td></td>
<td>WeC06.5</td>
<td>2971</td>
<td></td>
</tr>
<tr>
<td>Shi, Guodong</td>
<td>WeC06.2</td>
<td>1789</td>
<td></td>
<td>WeC06.6</td>
<td>2977</td>
<td></td>
</tr>
<tr>
<td>Shi, Junzhe</td>
<td>WeC06.4</td>
<td>1429</td>
<td></td>
<td>WeA01.7</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Shi, Shuyan</td>
<td>ThC04.6</td>
<td>1441</td>
<td></td>
<td>WeA01.11</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Shi, Yang</td>
<td>ThB12</td>
<td>CC</td>
<td></td>
<td>FrC10</td>
<td>5143</td>
<td></td>
</tr>
<tr>
<td>Shi, Yano</td>
<td>FrA01.4</td>
<td>3524</td>
<td></td>
<td>ThB04.1</td>
<td>2140</td>
<td></td>
</tr>
<tr>
<td>Shim, Huanyi</td>
<td>ThB12.2</td>
<td>2420</td>
<td></td>
<td>ThC09</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Shukla, Apurv</td>
<td>FrA01.6</td>
<td>3537</td>
<td></td>
<td>FrB09.4</td>
<td>4339</td>
<td></td>
</tr>
<tr>
<td>Simard, Joel David</td>
<td>ThB14</td>
<td>O</td>
<td></td>
<td>FrC06.4</td>
<td>5505</td>
<td></td>
</tr>
<tr>
<td>Singh, Abhyudal</td>
<td>FrA04.10</td>
<td>3941</td>
<td></td>
<td>ThC10.3</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td>Singh, Aman Kumar</td>
<td>FrB19.4</td>
<td>4711</td>
<td></td>
<td>FrC12.3</td>
<td>5207</td>
<td></td>
</tr>
<tr>
<td>Singh, Mayank</td>
<td>FrC03.1</td>
<td>4870</td>
<td></td>
<td>WeB02.4</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Singh, Rajpal</td>
<td>FrA02.15</td>
<td>3722</td>
<td></td>
<td>WeB06</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>Singh, Shubham</td>
<td>FrB13.5</td>
<td>2476</td>
<td></td>
<td>ThC01</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Singh, Surinder</td>
<td>WeA04.15</td>
<td>474</td>
<td></td>
<td>ThC21</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Singh, Tarunraj</td>
<td>WeC03.3</td>
<td>1323</td>
<td></td>
<td>ThC21</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Sirmar, Joel David</td>
<td>FrC17.5</td>
<td>5394</td>
<td></td>
<td>FrB11</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Skrobekk, John</td>
<td>ThB04.1</td>
<td>1512</td>
<td></td>
<td>FrC10</td>
<td>5143</td>
<td></td>
</tr>
<tr>
<td>Sivaranjani, S</td>
<td>FrC01.2</td>
<td>2758</td>
<td></td>
<td>FrC06.4</td>
<td>1432</td>
<td></td>
</tr>
<tr>
<td>Snyder, Murray</td>
<td>ThB09</td>
<td>CC</td>
<td></td>
<td>WeC06</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Soderlund, Alexander</td>
<td>ThB09</td>
<td>CC</td>
<td></td>
<td>WeC06</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Sofge, Don</td>
<td>FrB09.4</td>
<td>4339</td>
<td></td>
<td>ThB06</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Soltani, Mohsen</td>
<td>FrA04.18</td>
<td>3993</td>
<td></td>
<td>ThC21</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Somalwar, Anne</td>
<td>FrC19.3</td>
<td>5460</td>
<td></td>
<td>FrC06</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>Somarakis, Christoforos</td>
<td>FrC20.4</td>
<td>5505</td>
<td></td>
<td>WeC18.1</td>
<td>1837</td>
<td></td>
</tr>
<tr>
<td>Song, Ziyu</td>
<td>WeB06</td>
<td>O</td>
<td></td>
<td>WeC10.29</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Sornborger, Andrew T</td>
<td>ThC10.3</td>
<td>3100</td>
<td></td>
<td>FrB11</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Sorrentino, Francesco</td>
<td>FrC12.3</td>
<td>5207</td>
<td></td>
<td>FrC10</td>
<td>5143</td>
<td></td>
</tr>
<tr>
<td>Spasowski, Stefan</td>
<td>WeB02.4</td>
<td>560</td>
<td></td>
<td>FrC06</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>Soudjani, Sadegh</td>
<td>ThC19.2</td>
<td>3417</td>
<td></td>
<td>FrC10</td>
<td>5143</td>
<td></td>
</tr>
<tr>
<td>Spanakakis, Marios</td>
<td>ThPo1.23</td>
<td>2006</td>
<td></td>
<td>FrB06</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Spanel, Davide</td>
<td>FrC15.4</td>
<td>5320</td>
<td></td>
<td>FrC06</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>Spong, Mark W</td>
<td>ThB03.3</td>
<td>2116</td>
<td></td>
<td>ThB06</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Sreenivasan, Gayatri</td>
<td>FrB14.3</td>
<td>4524</td>
<td></td>
<td>ThC21</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Srivivasan, Vittal</td>
<td>FrC14.2</td>
<td>5270</td>
<td></td>
<td>ThC21</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Srisuma, Prakir</td>
<td>ThC08.4</td>
<td>3031</td>
<td></td>
<td>ThC21</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

180
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamouli, Charis</td>
<td>ThC04.5</td>
<td>2897</td>
</tr>
<tr>
<td>Starke, Jens</td>
<td>WeB12.2</td>
<td>887</td>
</tr>
<tr>
<td>Stavdahl, Øyvind</td>
<td>ThC03.3</td>
<td>2844</td>
</tr>
<tr>
<td>Stefanopoulou, Anna G</td>
<td>ThPo1.42</td>
<td>*</td>
</tr>
<tr>
<td>Stein, Adrian</td>
<td>FrB10.6</td>
<td>4390</td>
</tr>
<tr>
<td>Steinbrecher, Christian</td>
<td>FrC14.5</td>
<td>5288</td>
</tr>
<tr>
<td>Stockar, Stephanie</td>
<td>WeB10.6</td>
<td>839</td>
</tr>
<tr>
<td>Stoica, Cristina</td>
<td>FrC19.3</td>
<td>3424</td>
</tr>
<tr>
<td>Stolle, Phoebus Raphael</td>
<td>FrC14</td>
<td>5294</td>
</tr>
<tr>
<td>Stone, Peter</td>
<td>WeA03.17</td>
<td>352</td>
</tr>
<tr>
<td>Strässer, Robin</td>
<td>WeC19.4</td>
<td>1891</td>
</tr>
<tr>
<td>Strebe, Luke</td>
<td>WeC03.1</td>
<td>1311</td>
</tr>
<tr>
<td>Strohbeck, Jan</td>
<td>WeA01.19</td>
<td>111</td>
</tr>
<tr>
<td>Strong, Amy</td>
<td>ThC18</td>
<td>3377</td>
</tr>
<tr>
<td>Su, Hongye</td>
<td>WeA02.11</td>
<td>186</td>
</tr>
<tr>
<td>Su, Ruchao</td>
<td>WeB17.1</td>
<td>1065</td>
</tr>
<tr>
<td>Su, Shaozhao</td>
<td>WeA04.17</td>
<td>486</td>
</tr>
<tr>
<td>Su, Weihua</td>
<td>WeA04.4</td>
<td>402</td>
</tr>
<tr>
<td>Su, Yao</td>
<td>WeB03.4</td>
<td>594</td>
</tr>
<tr>
<td>Su, Zhiheng</td>
<td>WeC08.3</td>
<td>1506</td>
</tr>
<tr>
<td>Su, Zifel</td>
<td>ThC07.4</td>
<td>3001</td>
</tr>
<tr>
<td>Subbarao, Kamesh</td>
<td>WeB09.1</td>
<td>771</td>
</tr>
<tr>
<td>Subraman, Arun Bala</td>
<td>ThPo1.5</td>
<td>1988</td>
</tr>
<tr>
<td>Sultan, Cornel</td>
<td>FrC06.1</td>
<td>4980</td>
</tr>
<tr>
<td>Sun, Donglei</td>
<td>WeC10.5</td>
<td>1592</td>
</tr>
<tr>
<td>Sun, Jing</td>
<td>ThB16.2</td>
<td>2558</td>
</tr>
<tr>
<td>Sun, Lingfeng</td>
<td>WeA02.5</td>
<td>143</td>
</tr>
<tr>
<td>Sun, Shiqing</td>
<td>ThB21.3</td>
<td>2734</td>
</tr>
<tr>
<td>Sun, WeiKe</td>
<td>WeB08.1</td>
<td>749</td>
</tr>
<tr>
<td>Sun, Weyiang</td>
<td>FrC12.1</td>
<td>5195</td>
</tr>
<tr>
<td>Sun, Xi-Ming</td>
<td>ThB11.1</td>
<td>2374</td>
</tr>
<tr>
<td>Sun, Xiaor</td>
<td>FrC01.5</td>
<td>4825</td>
</tr>
<tr>
<td>Sun, Yifan</td>
<td>FrA03.15</td>
<td>3847</td>
</tr>
<tr>
<td>Sun, ZeXin</td>
<td>FrB06.3</td>
<td>4224</td>
</tr>
<tr>
<td>Sun, ZongXuan</td>
<td>FrB07.2</td>
<td>4248</td>
</tr>
<tr>
<td>Sundar, Kaarthik</td>
<td>FrC16.4</td>
<td>5357</td>
</tr>
<tr>
<td>Sundaram, Shreyas</td>
<td>ThC02.5</td>
<td>2816</td>
</tr>
<tr>
<td>Suplin, Vladimir</td>
<td>ThPo1.14</td>
<td>1997</td>
</tr>
<tr>
<td>Suryavanshi, Atharva Vijay</td>
<td>FrB12.4</td>
<td>4452</td>
</tr>
<tr>
<td>Susto, Gian Antonio</td>
<td>WeC08.1</td>
<td>1494</td>
</tr>
<tr>
<td>Suykens, J.A.K.</td>
<td>WeC05.5</td>
<td>1411</td>
</tr>
<tr>
<td>Swann, Riley</td>
<td>WeA04.11</td>
<td>447</td>
</tr>
<tr>
<td>Syed, Bilal Javed</td>
<td>FrC07.2</td>
<td>5024</td>
</tr>
<tr>
<td>Syed, Wasif Haider</td>
<td>ThB17.3</td>
<td>2598</td>
</tr>
<tr>
<td>Sze, Timothy</td>
<td>FrA01.18</td>
<td>3618</td>
</tr>
<tr>
<td>Sznaier, Mario</td>
<td>WeB19.2</td>
<td>1146</td>
</tr>
<tr>
<td></td>
<td>FrB04.4</td>
<td>4149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Khalil, Nathalie</td>
<td>FrB02.2</td>
<td>4058</td>
</tr>
<tr>
<td>Tabasso, Camilla</td>
<td>WeC05.3</td>
<td>1398</td>
</tr>
<tr>
<td>Tabuada, Paulino</td>
<td>FrB20.1</td>
<td>4729</td>
</tr>
<tr>
<td>Tafazzol, Saeid</td>
<td>ThC17.3</td>
<td>3352</td>
</tr>
<tr>
<td>Tafreshi, Reza</td>
<td>WeBo1.2</td>
<td>510</td>
</tr>
<tr>
<td>Taghavian, Hamed</td>
<td>FrA01.13</td>
<td>3584</td>
</tr>
<tr>
<td>Taghvael, Amirhossein</td>
<td>WeC20.3</td>
<td>1921</td>
</tr>
<tr>
<td>Taha, Ahmad</td>
<td>ThB17.6</td>
<td>2618</td>
</tr>
<tr>
<td>Takaba, Kiyotsugu</td>
<td>WeB02.2</td>
<td>586</td>
</tr>
<tr>
<td>Takai, Shigemasa</td>
<td>WeA01.13</td>
<td>74</td>
</tr>
<tr>
<td>Takatori, Shou</td>
<td>FrC18.6</td>
<td>5441</td>
</tr>
<tr>
<td>Tan, Wallace</td>
<td>WeB01.5</td>
<td>528</td>
</tr>
<tr>
<td>Tan, Xiaobo</td>
<td>WeB14</td>
<td>O</td>
</tr>
<tr>
<td>Tanaka, Takashi</td>
<td>WeB19.5</td>
<td>1164</td>
</tr>
<tr>
<td>Tang, Jennifer</td>
<td>ThC01.4</td>
<td>2772</td>
</tr>
<tr>
<td>Tang, Michael</td>
<td>FrB21.4</td>
<td>4783</td>
</tr>
<tr>
<td>Tang, Shuxia</td>
<td>WeB06</td>
<td>O</td>
</tr>
<tr>
<td>Tao, Jiyue</td>
<td>WeB15.3</td>
<td>1000</td>
</tr>
<tr>
<td>Tao, Qinghua</td>
<td>WeC06</td>
<td>O</td>
</tr>
<tr>
<td>Tao, Ran</td>
<td>WeC19.1</td>
<td>1873</td>
</tr>
<tr>
<td>Tartaglione, Gaetano</td>
<td>FrB19.5</td>
<td>4717</td>
</tr>
<tr>
<td>TatlicioGlue, Enver</td>
<td>ThB19.2</td>
<td>2660</td>
</tr>
<tr>
<td>Tavakoli, Nagar</td>
<td>FrA03.8</td>
<td>3803</td>
</tr>
<tr>
<td>Taven, Mehdi</td>
<td>FrA04.18</td>
<td>3993</td>
</tr>
<tr>
<td>Tavasoli, Ali</td>
<td>WeB01.3</td>
<td>516</td>
</tr>
<tr>
<td>Tayal, Manan</td>
<td>WeA03.13</td>
<td>325</td>
</tr>
<tr>
<td>Teyebi, Abdelhamid</td>
<td>WeB18.6</td>
<td>1133</td>
</tr>
<tr>
<td>Taylor, Charles</td>
<td>FrB08.6</td>
<td>4314</td>
</tr>
<tr>
<td>Tedesco, Francesco</td>
<td>ThC12.6</td>
<td>3196</td>
</tr>
<tr>
<td>Tegling, Emma</td>
<td>WeC17.2</td>
<td>1813</td>
</tr>
<tr>
<td>Tengesdal, Trym</td>
<td>FrC02.4</td>
<td>4858</td>
</tr>
<tr>
<td>Teklaslan, Huseyn Emre</td>
<td>ThC11.3</td>
<td>3138</td>
</tr>
<tr>
<td>Tekumatla, Shiva</td>
<td>FrA03.4</td>
<td>3775</td>
</tr>
<tr>
<td>Tengesdal, Trym</td>
<td>FrB02.1</td>
<td>4050</td>
</tr>
<tr>
<td>Teresa, Maria</td>
<td>FrC07.4</td>
<td>5036</td>
</tr>
<tr>
<td>Teter, Alexis</td>
<td>FrB19.6</td>
<td>4723</td>
</tr>
<tr>
<td>Name</td>
<td>Conference</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Tewari, Deepti</td>
<td>ThC21.1</td>
<td>3480</td>
</tr>
<tr>
<td>Theiliot, Didier</td>
<td>WeC10.2</td>
<td>1574</td>
</tr>
<tr>
<td>Theodosis, Dionysios</td>
<td>ThB07.2</td>
<td>2254</td>
</tr>
<tr>
<td>Theofanidis, Michail</td>
<td>FrA03.1</td>
<td>3752</td>
</tr>
<tr>
<td>Thitsa, Makhin</td>
<td>FrA04.17</td>
<td>3987</td>
</tr>
<tr>
<td>Thompson, Jaron</td>
<td>FrB09.3</td>
<td>4333</td>
</tr>
<tr>
<td>Thorpe, Adam</td>
<td>ThC11</td>
<td>C</td>
</tr>
<tr>
<td>Tian, Yuhe</td>
<td>WeC14</td>
<td>CC</td>
</tr>
<tr>
<td>Timotheou, Stelios</td>
<td>WeC07</td>
<td>CC</td>
</tr>
<tr>
<td>Ting, Jonathan</td>
<td>WeA01.3</td>
<td>15</td>
</tr>
<tr>
<td>Tiomkin, Stas</td>
<td>WeA02.7</td>
<td>159</td>
</tr>
<tr>
<td>Tirolo, Cristian</td>
<td>WeB03.6</td>
<td>608</td>
</tr>
<tr>
<td>Tofigh, Mohamadali</td>
<td>WeA01.15</td>
<td>86</td>
</tr>
<tr>
<td>Tokekar, Pratap</td>
<td>WeA03.19</td>
<td>367</td>
</tr>
<tr>
<td>Tolic, Domagoj</td>
<td>WeB20.5</td>
<td>1204</td>
</tr>
<tr>
<td>Tom, Nathan</td>
<td>ThC16.2</td>
<td>3322</td>
</tr>
<tr>
<td>Tomizuka, Masayoshi</td>
<td>WeA02.5</td>
<td>143</td>
</tr>
<tr>
<td>Tong, Junbo</td>
<td>WeB12.6</td>
<td>911</td>
</tr>
<tr>
<td>Tooranjipour, Pouria</td>
<td>ThB19.1</td>
<td>2654</td>
</tr>
<tr>
<td>Topcu, Ufuk</td>
<td>WeA02.4</td>
<td>135</td>
</tr>
<tr>
<td>Tran, Dzung</td>
<td>WeB02.1</td>
<td>542</td>
</tr>
<tr>
<td>Tran, Hoang-Dung</td>
<td>WeA04.2</td>
<td>388</td>
</tr>
<tr>
<td>Tran, Khoah</td>
<td>WeA03.11</td>
<td>312</td>
</tr>
<tr>
<td>Tran, Vivian</td>
<td>ThC21.4</td>
<td>3498</td>
</tr>
<tr>
<td>Trimbolli, Michael</td>
<td>WeC06.5</td>
<td>1449</td>
</tr>
<tr>
<td>Trimpe, Sebastian</td>
<td>FrC06.6</td>
<td>5010</td>
</tr>
<tr>
<td>Trivedi, Ashutosh</td>
<td>FrB18</td>
<td>C</td>
</tr>
<tr>
<td>Tron, Roberto</td>
<td>ThC18.6</td>
<td>3403</td>
</tr>
<tr>
<td>Troiti, Francesco</td>
<td>ThB11.5</td>
<td>2399</td>
</tr>
<tr>
<td>Trudnowski, Daniel J.</td>
<td>ThC19.1</td>
<td>3411</td>
</tr>
<tr>
<td>Tseng, H. Eric</td>
<td>WeA03.7</td>
<td>285</td>
</tr>
<tr>
<td>Tsiomas, Anastasios</td>
<td>WeB05.2</td>
<td>656</td>
</tr>
<tr>
<td>Tsutsumi, Munechika</td>
<td>FrB07.5</td>
<td>4268</td>
</tr>
<tr>
<td>Tu, Hao</td>
<td>WeC21.1</td>
<td>1946</td>
</tr>
<tr>
<td>Tumova, Jana</td>
<td>WeA03.2</td>
<td>251</td>
</tr>
<tr>
<td>Turner, Matthew C.</td>
<td>WeB21.3</td>
<td>1231</td>
</tr>
<tr>
<td>Tutte, Jacob</td>
<td>WeA04.1</td>
<td>382</td>
</tr>
<tr>
<td>Tzortzoglou, Filippos</td>
<td>ThB07.2</td>
<td>2254</td>
</tr>
<tr>
<td>Tzoumas, Vasileios</td>
<td>WeA02.12</td>
<td>192</td>
</tr>
<tr>
<td>Ubbellacker, Wyatt</td>
<td>ThC18.3</td>
<td>3383</td>
</tr>
<tr>
<td>Ugrinovskii, Valery</td>
<td>WeC19.6</td>
<td>1904</td>
</tr>
<tr>
<td>Ulrich, Steve</td>
<td>ThC09.4</td>
<td>3068</td>
</tr>
<tr>
<td>Umateh, Bhagyashree</td>
<td>WeC18</td>
<td>CC</td>
</tr>
<tr>
<td>Uppal, Arshad</td>
<td>FrC07.2</td>
<td>5024</td>
</tr>
<tr>
<td>Urakawa, Yoshiyuki</td>
<td>ThPo1.40</td>
<td>2098</td>
</tr>
<tr>
<td>Urbanski, Christopher</td>
<td>FrC01.4</td>
<td>4819</td>
</tr>
<tr>
<td>Uribe, Cesar A.</td>
<td>ThB02.6</td>
<td>2098</td>
</tr>
<tr>
<td>Uzun, Muhammed Yusuf</td>
<td>WeC10.3</td>
<td>1580</td>
</tr>
<tr>
<td>Uzzaman, Nahid</td>
<td>WeB20.3</td>
<td>1192</td>
</tr>
<tr>
<td>Uwaineza, Jean-Bernard</td>
<td>WeC04.5</td>
<td>1373</td>
</tr>
<tr>
<td>Vafaee, Reza</td>
<td>FrC06.4</td>
<td>4998</td>
</tr>
<tr>
<td>Vahdat, Zahra</td>
<td>FrA04.10</td>
<td>3941</td>
</tr>
<tr>
<td>Vaidya, Umesh</td>
<td>WeC18.3</td>
<td>1849</td>
</tr>
<tr>
<td>Vakili, Sasan</td>
<td>WeB04.3</td>
<td>626</td>
</tr>
<tr>
<td>Varvoudakis, Kyriakos</td>
<td>FrA02.8</td>
<td>3680</td>
</tr>
<tr>
<td>van Beers, Joash</td>
<td>FrC02.1</td>
<td>4838</td>
</tr>
<tr>
<td>van den Berg, Daniel</td>
<td>WeB16.5</td>
<td>1051</td>
</tr>
<tr>
<td>van den Eijnden, Sebastiaan</td>
<td>FrB08.3</td>
<td>4296</td>
</tr>
<tr>
<td>Van der veen, Gijs</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>van Erp, Bart.</td>
<td>ThC01.3</td>
<td>2766</td>
</tr>
<tr>
<td>van Heusden, Klaske</td>
<td>FrC09.3</td>
<td>5106</td>
</tr>
<tr>
<td>van Leeuwen, Steven</td>
<td>FrC05.5</td>
<td>4967</td>
</tr>
<tr>
<td>van Wingerden, Jan-Willem</td>
<td>WeB16</td>
<td>O</td>
</tr>
<tr>
<td>van der Zee, Wouter</td>
<td>ThC31.5</td>
<td></td>
</tr>
<tr>
<td>Vandenberghe, Filip</td>
<td>WeA02.4</td>
<td>1577</td>
</tr>
<tr>
<td>Vantset, Paul</td>
<td>FrA07.6</td>
<td>506</td>
</tr>
<tr>
<td>Vansteenkiste, Christophe</td>
<td>FrC02.5</td>
<td>4708</td>
</tr>
<tr>
<td>Varsan, Jason</td>
<td>WeC14.2</td>
<td>3043</td>
</tr>
<tr>
<td>Vartanian, Vasilios</td>
<td>ThB03.5</td>
<td>2200</td>
</tr>
<tr>
<td>Vaverka, Kavita</td>
<td>ThC14.3</td>
<td>3258</td>
</tr>
<tr>
<td>Vega Cruz, Pastor</td>
<td>ThPo1.38</td>
<td>*</td>
</tr>
<tr>
<td>Vehlhaber, Finn Niklas</td>
<td>ThB07</td>
<td>C</td>
</tr>
<tr>
<td>Vekassy, Aron</td>
<td>ThB07.6</td>
<td>2279</td>
</tr>
<tr>
<td>Velicheti, Raj Kirili</td>
<td>WeC11.1</td>
<td>1604</td>
</tr>
<tr>
<td>Venkat, Dhuva</td>
<td>ThC19.1</td>
<td>3411</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Conference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vafaee, Reza</td>
<td>FrC06.4</td>
<td>4998</td>
</tr>
<tr>
<td>Vahdat, Zahra</td>
<td>FrA04.10</td>
<td>3941</td>
</tr>
<tr>
<td>Vaidya, Umesh</td>
<td>WeC18.3</td>
<td>1849</td>
</tr>
<tr>
<td>Vakili, Sasan</td>
<td>WeB04.3</td>
<td>626</td>
</tr>
<tr>
<td>Varvoudakis, Kyriakos</td>
<td>FrA02.8</td>
<td>3680</td>
</tr>
<tr>
<td>van Beers, Joash</td>
<td>FrC02.1</td>
<td>4838</td>
</tr>
<tr>
<td>van den Berg, Daniel</td>
<td>WeB16.5</td>
<td>1051</td>
</tr>
<tr>
<td>van den Eijnden, Sebastiaan</td>
<td>FrB08.3</td>
<td>4296</td>
</tr>
<tr>
<td>Van der veen, Gijs</td>
<td>FrB13.3</td>
<td>4485</td>
</tr>
<tr>
<td>van Erp, Bart.</td>
<td>ThC01.3</td>
<td>2766</td>
</tr>
<tr>
<td>van Heusden, Klaske</td>
<td>FrC09.3</td>
<td>5106</td>
</tr>
<tr>
<td>van Leeuwen, Steven</td>
<td>FrC05.5</td>
<td>4967</td>
</tr>
<tr>
<td>van Wingerden, Jan-Willem</td>
<td>WeB16</td>
<td>O</td>
</tr>
<tr>
<td>van der Zee, Wouter</td>
<td>ThC31.5</td>
<td></td>
</tr>
<tr>
<td>Vandenberghe, Filip</td>
<td>WeA02.4</td>
<td>1577</td>
</tr>
<tr>
<td>Vansteenkiste, Paul</td>
<td>FrA07.6</td>
<td>506</td>
</tr>
<tr>
<td>Vartanian, Vasilios</td>
<td>ThB03.5</td>
<td>2200</td>
</tr>
<tr>
<td>Vaverka, Kavita</td>
<td>ThC14.3</td>
<td>3258</td>
</tr>
<tr>
<td>Vega Cruz, Pastor</td>
<td>ThPo1.38</td>
<td>*</td>
</tr>
<tr>
<td>Vehlhaber, Finn Niklas</td>
<td>ThB07</td>
<td>C</td>
</tr>
<tr>
<td>Vekassy, Aron</td>
<td>ThB07.6</td>
<td>2279</td>
</tr>
<tr>
<td>Velicheti, Raj Kirili</td>
<td>WeC11.1</td>
<td>1604</td>
</tr>
<tr>
<td>Venkat, Dhuva</td>
<td>ThC19.1</td>
<td>3411</td>
</tr>
</tbody>
</table>
Wickramasuriya, Maneesha ThPo1.11 1994
Wiig, Martin Syre ... ThC11.5 3152
Wik, Torsten ... ThB06.2 2218
... FrB17.5 4651
Williams, Alan .. FrB08.6 4314
Wilson, Dan ... FrB15.4 4566
Wiltz, Adrian .. ThB13.2 2458
Winkler, Alexander ... FrC13.2 5232
Witczak, Marcin .. WeB20.4 1198
Witrant, Emmanuel ... ThC15.3 3296
Wollherr, Dirk ... FrC07.5 5042
Wong, Clement .. ThC21.3 3492
Wu, Alex (Xinting) .. WeC19.6 1904
Wu, Di .. WeB06.1 687
... WeB01.5 528
Wu, Guoquan .. WeB01.5 5250
... FrC13.5 4566
Wu, Jingyi .. FrC19.3 5460
... ThPo1.8 1991
Wu, Pengying .. WeB03.4 594
... FrC15.2 5307
Wu, Ruixin .. FrA01.14 3590
... FrA04.20 4005
... FrB15.4 4566
... WeA02.2 123
... ThC18.4 3391
... WeA01.18 104
... FrB20.3 4741
... WeB01.5 528
... WeC01.2 1256
... FrB02.5 4078
... WeA02.11 186
... WeA03.17 352

X

Xi, Xiangming .. WeC05.5 1411
Xiang, Weiming ... WeA04.2 388
... FrA01.16 3604
Xiao, Feng .. FrC11.5 5189
... FrC20.3 5498
... WeB01.5 528
... ThC08.1 3013
... WeC07.1 1455
... WeC07.3 1468
Xibilia, Maria Gabriella WeB04.6 644
Xie, Le .. FrA01.6 3537
Xie, Lei ... FrA01.4 3524
... WeC17.3 1819
Xie, Siyu .. WeC04.4 1367
Xie, Yifan .. ThC12.4 3184
Xing, Ming ... ThB01.3 2035
... ThC06.2 2950
... ThB17.4 2604
... WeB11.5 869
... WeC03.2 1317
... FrC12.1 5195
... WeC05.5 1411
... FrC06.2 4986
... FrB04.5 4155
Xu, Xiaodong .. FrC15 4451
Xu, Yicheng .. FrC05.2 1392
Xu, Yuezhu ... FrC10.4 5143
... WeC01 4289
... WeC01.2 1256
Xu, Zhe .. WeA01.6 33
... WeA01.10 56
... WeB01.4 522
... FrB08 4289
Xu, Zhi .. ThB05.1 2176
Xu, Zhuo .. WeA02.5 143
Xu, Zihao ... FrB17.1 4624
Xu, Zipui ... WeA02.12 192
Xue, Bai .. FrA01.14 3590
... FrA04.20 4005
Xue, Tonglai .. FrB20.3 4741
Y

Yamazaki, Sachiyoh ... WeA03.12 318
Yan, Yitao ... FrC09.2 5100
Yan, Yuntian .. FrC07.5 5042
Yang, Haiying .. FrB08.4 4302
Yang, Jingbo .. ThB17.5 2612
Yang, Liren ... WeB19.6 1172
Yang, Lisheng .. ThC16.4 3334
Yang, Lixing ... ThB15.5 2545
Yang, Shuo ... WeA03.16 344
Yang, Tiange .. ThB12.5 2440
Yang, Yanhua ... ThC11.4 3146
Yang, Yefeng .. FrA03.9 3809
Yang, Yejiang .. WeA04.2 388
... FrA01.16 3604
Yang, Ying ... WeC08.6 1525
Yang, Yulong ... ThC04.4 2891
Yang, Zewen .. WeB02.4 560
Yao, Bin .. WeA04.8 427
... FrA02 CC
... FrA02.18 3740
Yao, Jingshi ... ThC08.3 3025
Yao, Ningshi ... WeB19.1 1139
Ye, Mengbin ... FrB11.3 4409
Ye, Yongqiăng .. ThC06.2 2950
Yechiel, Oded ... ThP01.14 1997
Yedavalli, Rama K ... WeB18 C
... WeB18.1 1103
... WeB18.2 1109
... WeB18.3 1109
... FrC05 CC
... FrC05.2 4948
Yegin, M. Oguz .. ThC15.2 3290
Yemini, Michal .. ThC02.6 2822
Yi, Baozhao .. WeC06.1 1423
Yi, Jingang .. WeB03.2 581
... ThC12.1 3166
... FrA01 CC
... FrB14.3 4524
Yi, Peng .. WeA02.19 239
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yildiz, Yildiray</td>
<td>WeC10.3</td>
<td>1580</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC04.1</td>
<td>4907</td>
<td></td>
</tr>
<tr>
<td>Yilmaz, Cemal Tugrul</td>
<td>ThC05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC05.5</td>
<td>2936</td>
<td>5466</td>
</tr>
<tr>
<td></td>
<td>ThCh17.5</td>
<td>3365</td>
<td>4333</td>
</tr>
<tr>
<td></td>
<td>ThCh08.3</td>
<td>3025</td>
<td>2802</td>
</tr>
<tr>
<td></td>
<td>FrC15.2</td>
<td>5307</td>
<td>3270</td>
</tr>
<tr>
<td></td>
<td>WeC07.5</td>
<td>1480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC19.5</td>
<td>1897</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC12</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC12.1</td>
<td>2412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC19.6</td>
<td>5480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA01.4</td>
<td>21</td>
<td>2636</td>
</tr>
<tr>
<td></td>
<td>FrA03.19</td>
<td>3873</td>
<td>4759</td>
</tr>
<tr>
<td>Yoshikawa, Nobuyuki</td>
<td>WeA03.12</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>You, Fengqi</td>
<td>WeA02.3</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC08.1</td>
<td>3013</td>
<td></td>
</tr>
<tr>
<td>You, Keyou</td>
<td>ThB07.5</td>
<td>2273</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrA02.14</td>
<td>3716</td>
<td></td>
</tr>
<tr>
<td>Yousefian, Farzad</td>
<td>ThB05</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB05.2</td>
<td>2182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC05</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB08.1</td>
<td>2285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC09.2</td>
<td>1537</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB07.5</td>
<td>743</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC15.6</td>
<td>5333</td>
<td></td>
</tr>
<tr>
<td>You, Kevin</td>
<td>ThB08</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB08</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB08.1</td>
<td>2285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB07.1</td>
<td>2248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB11.4</td>
<td>2393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.4</td>
<td>1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA02.15</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB06.3</td>
<td>4224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB02.1</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.4</td>
<td>1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC11.3</td>
<td>1616</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrA04.5</td>
<td>3909</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB05.1</td>
<td>4170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrA04.2</td>
<td>3891</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zorroki, Baha</td>
<td>ThPo1.21</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>ThPo1.22</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.23</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC19.4</td>
<td>5466</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB09.3</td>
<td>4333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC02.3</td>
<td>2802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC14.5</td>
<td>3270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB12.3</td>
<td>2426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA04.6</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB15.4</td>
<td>1006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC04.1</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC04.2</td>
<td>1355</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.18</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.41</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB18.3</td>
<td>2636</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB20.6</td>
<td>4759</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC04.3</td>
<td>4919</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC06.5</td>
<td>5004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB06.4</td>
<td>707</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.4</td>
<td>1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB19.2</td>
<td>2660</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC15.1</td>
<td>1738</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC15.2</td>
<td>1071</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC09.3</td>
<td>1543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC21</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC21.3</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThB06.3</td>
<td>2224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB01.4</td>
<td>981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA02.2</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA03.15</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB09.4</td>
<td>4339</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThPo1.5</td>
<td>1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC17.4</td>
<td>1825</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB04.5</td>
<td>4155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB17.6</td>
<td>1097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA02.4</td>
<td>3656</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrB07.5</td>
<td>4268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC06.1</td>
<td>1423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrA03.3</td>
<td>3768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC08.3</td>
<td>1506</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA04</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB14.4</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC10.1</td>
<td>3088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeB12.5</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeA01.10</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WeC15.1</td>
<td>1738</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FrC19.6</td>
<td>5480</td>
<td></td>
</tr>
</tbody>
</table>
2024 American Control Conference

PROGRAM COMMITTEE

Mohammad Al Janaideh Ehsan Hashemi John Simpson-Porco
Douglas Bristow Manish Kumar Rifat Sipahi
Aranya Chakrabortty Jinfeng Liu Vaibhav Srivastava
Xu Chen Yao Ma Stephanie Stockar
Zheng Chen Yi Mazumdar Hao Su
Garrett Clayton William Nagel Ardalan Vahidi
Satadru Dey Gennaro Notomista Vishesh Vikas
Alexander Dowling Kenn Oldham Yue (Sophie) Wang
Helen Durand Tom Oomen Yuen Kuan Yong
M. Sami Fadali Yash Vardhan Pant Jun Zhang
Mohammed Farag Diane Peters Minghui Zheng
Andrew J. Fleming Hossein Rastgoftar Lei Zuo
Dejun Guo Juan Ren Raghu Venkataraman

SOCIETY REVIEW CHAIRS

AIAA
Maruthi Akella
The University of Texas at Austin
makella@mail.utexas.edu

AIChE
Jesus Flores-Cerrillo
Linde
Jesus.Flores-Cerrillo@linde.com

ASME
Marcello Canova
The Ohio State University
canova.1@osu.edu

IEEE
Amir G. Aghdam
Concordia University
aghdam@ieee.org

INFORMS-APS
Mark S. Squillante
IBM Research
mss@us.ibm.com

ISA
Lili Dong
Cleveland State University
l.dong34@csuohio.edu

SCS
Xin Wang
Southern Illinois University, Edwardsville
xwang@siue.edu

SIAM
Jacquelien M.A. Scherpen
University of Groningen
j.m.a.scherpen@rug.nl
OPENING RECEPTION
Tuesday, July 9, 6:30 PM – 8:30 PM
Westin Harbour Castle, Harbour Ballroom

AWARDS CEREMONY
Thursday, July 11, 11:45 AM – 12:45 PM
Westin Harbour Castle, Frontenac Ballroom

CONFERENCE BANQUET
Thursday, July 11, 6:30 PM – 9:30 PM
Royal Ontario Museum

CLOSING RECEPTION
Friday, July 12, 6:30 – 8:30 PM
Westin Harbour Castle, Harbour Ballroom