

Karlsruhe Institute of Technology

Conflict Detection in Automated Vehicle Testing Through Gamification

Majid Jegarian^{*}, Jonas Freyer^{*}, Qais Hamarneh ⁺, Lukas Klock^{*}⁺, Alexander Schyr^{*}⁺, Maike Schwammberger ⁺, Tobias Düser^{*}

* Institute of Product Engineering (IPEK), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany +Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ***Department of Information, Media and Design, SRH Hochschule Heidelberg, Heidelberg, Germany**

Abstract

The validation and testing of automated vehicles (AVs) present significant challenges, particularly due to the impracticality of **extensive real-world driving tests**. While virtual testing and simulation offer an alternative, they often miss real-world complexity.

To address this, a serious game called Automated Vehicle Validation (AVVA) was developed as a gamified platform that engages players to generate diverse, realistic driving scenarios.

Motivation

From a distance-based validation to a scenario-based validation approach

Distance-based Validation

Operating in the field

Scenario-based Validation

Virtual testing will be mandatory

Use Case Conflict Detection and Resolution

Conflict Situations

- Apart from critical scenarios autonomous traffic agents (ATAs) are faced with conflict situations in the real world
 - A conflict is a situation where an ATA cannot choose any action without violating rules or (safety) goals [4]
- In the informatics department conflict detection and resolution is an ongoing research topic but there is lacking data for conflict research

- Proposed idea: Use the AVVA videogame not only
- for scenario, but also for **conflict generation**!

Proposed Workflow

- 1. Players interact in AVVA and create conflict situations as a byproduct
- 2. Conflicts are being transferred to an abstract representation
- 3. The abstracted conflicts can be clustered and optimal resolution strategies can be developed or

Time consuming and costly Can be safety critical Random test case sampling \rightarrow We need to drive a lot of kilometers/miles. [1]

- in the release process of future vehicles
- Virtual testing must be executed on large scale

Scope

Leveraging gamification to generate a wide range of realistic driving scenarios for comprehensive automated vehicle testing

- Development a gamified environment
- Record relevant scenarios

Detect and record the critical and

- Design levels and minigames for scenario generation
- Support for simultaneous multiuser gameplay
- edge cases Easy re-evaluation in a high-
- fidelity environment

Development of a Serious Game

Foundation

Built on Unreal Engine 5 [2]

Model based on a real environment: ZalaZONE automotive proving ground [3]

- selected
- 4. The resolution strategy will then be applied in AVVA

Urban Multi-Iane Spatial Logic (UMLSL)

- For the abstract representation of conflicts, the Urban Multi-lane **Spatial Logic (UMLSL)** [5] has been introduced
 - Description of traffic scenarios based on the car's view
- Evolution of scenarios over time
- UMLSL is used to formalize what actions are safe and legal

E

If no available action is safe and legal \rightarrow Conflict

Toolchain Completion

- Automate detection and storage of critical scenarios in OSI format.
- Facilitating re-evaluation in high fidelity simulation environment

Features Multi-Player

- Different roles (e.g. cars, construction site vehicles, VRU, etc.)
- Freeroam game mode
- Mini-game and level mode: challenges or basic scenarios
- The players have to solve the challenges alone or cooperatively

Conflict Resolution Strategy Enhancement Refine conflict resolution strategies

Enable algorithms to handle more realistic and complex environments.

Expansion of AVVA Capabilities

- Expansion of AVVA into a large-scale ecosystem
- Connect with other simulators for enhanced integration and simulation capabilities

References

[1] Hermann Winner et al. Handbuch Fahrerassistenzsysteme. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. ISBN: 978-3-658057336. DOI: 10.1007 / 978 - 3-658-05734-3. [2] Epic Games. Unreal Engine 5. Version 5.0. Accessed:2024-10-09. [3] Tam'as Tettamanti et al. "Vehicle-In-the-Loop Test En-vironment for Autonomous Driving with MicroscopicTraffic Simulation". In: 2018 IEEE International Con-ference on Vehicular Electronics and Safety (ICVES).2018, pp. 1–6. [4] Maike Schwammberger. "An abstract model for provingsafety of autonomous urban traffic". In: TheoreticalComputer Science 744 (2018). [5] Schwammberger, Maike. "An abstract model for proving safety of autonomous urban traffic." Theoretical Computer Science 744 (2018): 143-169.

Contact

Majid Jegarian Email: majid.jegarian@kit.edu Phone: +49 721 608 46051

KIT – The Research University in the Helmholtz Association

