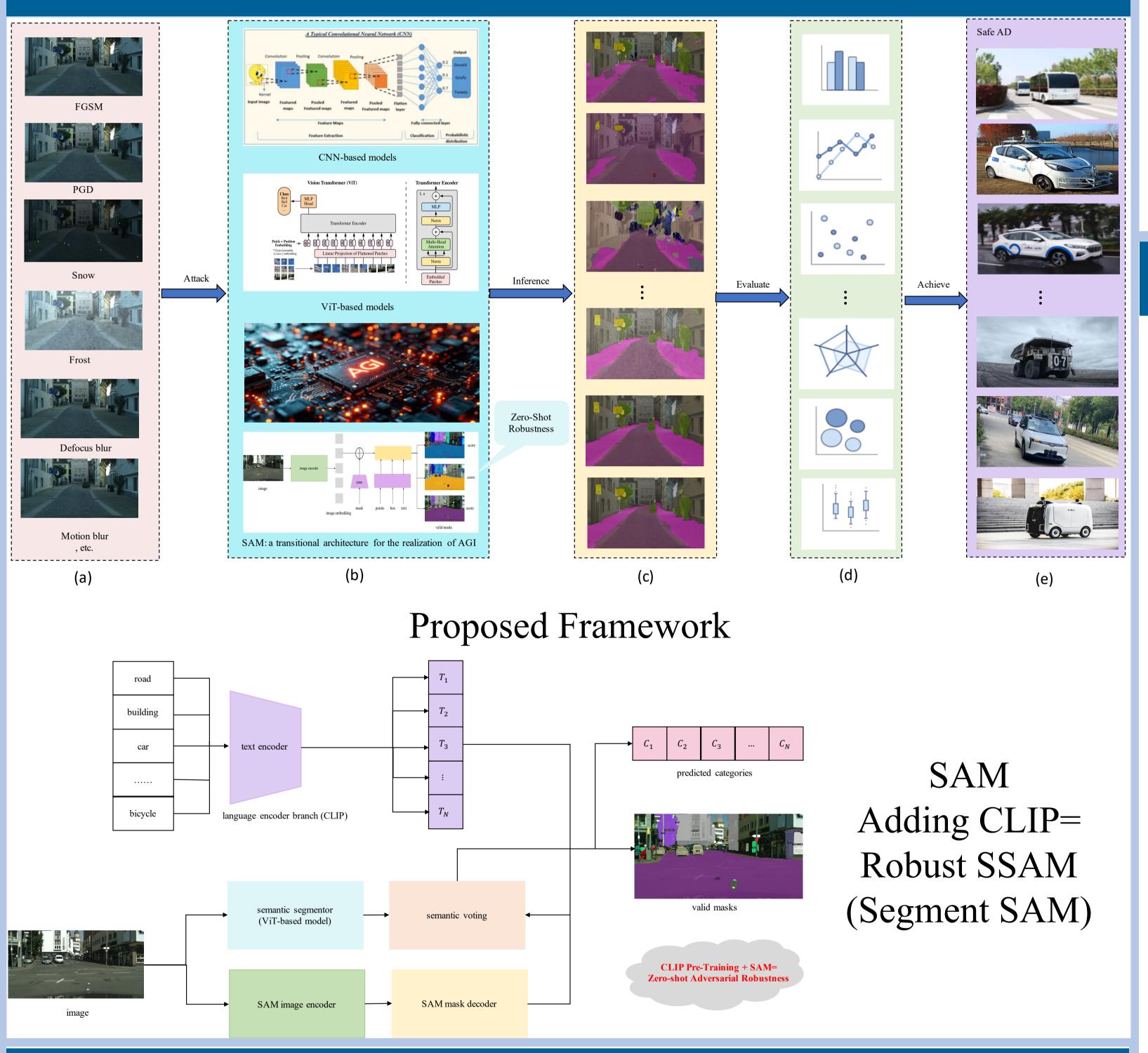


Segment-Anything Models Achieve Zero-shot Robustness in TU Graz **Autonomous Driving**

Jun Yan¹ Pengyu Wang¹ Danni Wang¹ Weiquan Huang¹ Daniel Watzenig² Huilin Yin¹ ¹College of Electronic and Information Engineering, Tongji University, China 2 Graz University of Technology

Introduction	Black-box Attacks						
Semantic segmentation models are vulnerable to adversarial attacks.							
Previous study ¹ has explored the robustness of the classical CNN-							
based semantic segmentation models. The emergence of new visual	Blur Weather Noise Digital Architecture clean Gaussian defocus motion glass zoom snow frost fog spatter speckle Gaussian shot impulse brightness contrast JPEG saturate pixelate elastic						
foundation models like SAM ² calls for the new research paradigm in	DP-ResNet50 [4] 76.6 66.0 62.2 65.3 52.9 24.3 19.6 33.7 72.5 45.3 32.8 10.7 14.0 9.5 74.4 70.6 34.0 74.6 63.3 74.3 DP-ResNet101 [4] 77.3 67.6 64.9 66.4 54.2 26.8 24.9 37.9 74.0 52.3 41.2 15.6 20.2 14.3 75.1 73.3 40.4 75.5 66.6 74.6 DP-MobileNetV2 [4] 72.9 59.6 55.8 60.0 44.6 21.8 19.6 28.1 66.9 47.8 26.0 9.6 10.6 12.1 69.4 64.3 22.1 69.8 54.7 71.1 DP-Xception65 [4] 78.4 71.6 68.6 69.6 62.5 25.0 19.9 26.5 65.8 60.8 28.4 7.0 8.0 5.1 66.6 71.1 71.1 76.2						
validation of autonomous driving.	FCN-ResNet50 [1] 67.9 55.9 52.5 56.5 43.4 22.6 17.3 31.1 48.6 45.2 10.1 1.8 2.2 1.5 54.6 60.4 15.4 52.0 33.6 64.8 FCN-ResNet101 [1] 69.0 57.3 54.1 56.6 43.5 21.9 17.3 27.9 53.4 47.1 17.0 4.8 5.1 6.0 58.0 59.6 22.9 52.8 39.8 65.9 FCN32s-VGG16 [1] 55.1 42.5 38.9 41.6 28.7 17.9 12.9 18.8 34.8 36.8 14.0 7.7 8.8 2.7 40.0 41.7 15.5 38.2 22.1 52.7 FCN16s-VGG16 [1] 58.4 42.9 29.8 18.0 12.6 17.9 33.5 37.7 8.6 2.4 3.3 2.3 40.9 44.0 14.3 39.3 21.9 56.1 FCN16s-VGG16 [1] 60.3 44.3 40.1 43.4 32.2 18.0 12.2 16.9 34.0 39.4 8.6 3.2						
The main contributions of this work are summarized below:							
\succ (Methodology-wise) In the semantic segmentation task, this study	PSPNet-ResNet50 [3] 69.3 57.1 54.1 57.4 35.4 22.8 10.3 17.8 45.0 42.9 9.5 2.8 3.1 4.6 56.8 56.1 13.9 49.0 25.9 65.6 PSPNet-ResNet101 [3] 70.7 58.8 55.4 59.0 43.8 24.6 15.4 32.7 54.9 44.1 12.9 3.4 4.5 3.5 60.3 60.9 27.1 53.6 43.6 66.9 SegNet-VGG16 [2] 62.7 52.4 49.0 54.8 51.8 23.4 18.5 24.9 42.4 49.5 40.2 18.4 22.8 13.0 56.2 52.9 37.7 52.9 62.0 61.5 OCRNet-ResNet100 [7] 80.2 68.9 69.0 56.3 24.1 21.4 43.4 76.3 56.6 31.7 6.4 9.6 12.9 79.1 73.4 28.5 78.6 69.3 78.4 OCRNet-HRNet-W48 [7] 80.5 70.7 70.3 71.1 63.0 21.5 18.7 44.2 75.2 63.9						
shows a SAM pipeline with the assistance of text encoder achieves	OCRNet-HRNet-W48 [7] 80.5 70.7 70.3 71.1 63.0 21.5 18.7 44.2 75.2 63.9 42.4 16.2 17.8 18.0 79.5 76.5 36.1 78.0 76.6 78.9 OCRNet-HRNet-W18s [7] 73.6 59.0 62.3 62.9 52.8 20.1 18.5 33.7 61.0 54.6 29.5 10.9 11.8 8.8 69.8 69.3 30.4 70.0 69.5 72.4 ISANet (ResNet50) [6] 78.4 64.7 63.2 64.6 51.0 19.7 11.8 33.5 69.5 50.2 30.0 9.0 11.8 11.7 76.8 69.0 23.0 76.3 60.8 76.1 ISANet (ResNet101) [6] 79.6 67.4 67.6 56.2 20.0 19.8 37.1 75.1 55.1 33.9 10.6 13.8 14.2 78.2 72.8 28.9 77.7 65.3 76.9 STDC (Pre-training) [8] 71.8 59.6 63.6 62.5 52.5 24.6 11.4 27.4 59.1						
a robust in-context learning ability under the adversarial attacks.	SegFormer-b3 [5] 81.9 74.5 74.2 74.2 68.1 31.6 43.8 55.1 79.2 70.4 68.5 51.8 57.2 50.5 81.4 80.7 60.6 81.1 74.1 80.5 SegFormer-b0 [5] 76.5 64.6 67.5 67.7 57.2 27.5 40.9 71.2 56.3 51.9 26.5 31.1 27.6 74.9 73.7 47.5 74.3 68.1 74.3						
\succ (Empirical-study-wise) We evaluate the robustness of CNN models,	OneFormer-SwinTransfomer [30] 83.0 79.8 78.0 77.4 73.9 35.2 65.9 56.8 81.6 78.8 77.8 67.5 72.7 73.6 82.5 82.0 71.8 82.5 77.4 81.7 OneFormer-ConvXNet [30] 83.0 79.0 78.0 77.4 73.9 35.2 57.3 56.6 82.3 76.1 79.1 71.0 74.4 72.3 82.7 82.3 71.0 82.4 78.6 81.0						
ViT models, and SAM models under the white-box attacks and	SAM-SegFormer 73.0 65.7 63.1 64.4 63.1 24.5 38.9 44.1 67.5 60.0 63.5 52.9 56.7 50.5 71.7 69.6 60.9 72.8 69.3 71.6 SAM-OneFormer 80.0 75.5 73.7 72.3 70.8 29.5 58.3 51.7 76.9 72.4 74.0 63.9 68.7 67.6 78.9 77.2 68.9 79.5 72.7 77.8 MobileSAM-SegFormer 68.9 61.7 59.0 60.0 58.9 20.9 32.1 37.4 60.7 53.7 57.5 47.7 51.4 44.9 67.5 61.9 56.3 68.5 65.5 67.6 MobileSAM-OneFormer 75.3 70.5 66.5 25.7 44.2 44.6 69.7 64.0 67.0 56.5 61.1 58.5 73.9 68.5 63.3 74.6 68.5 73.1 MobileSAM-OneFormer 75.3 70.5 66.5 25.7 44.2 44.6 69.7 64.0 67.0 56.5 61.1						

- black-box attacks on the dataset of Cityscapes.



Method Overview

TABLE II ROBUSTNESS OF SEMANTIC SEGMENTATION MODELS UNDER THE WORST BLACK-BOX CORRUPTIONS (SEVERITY=5).

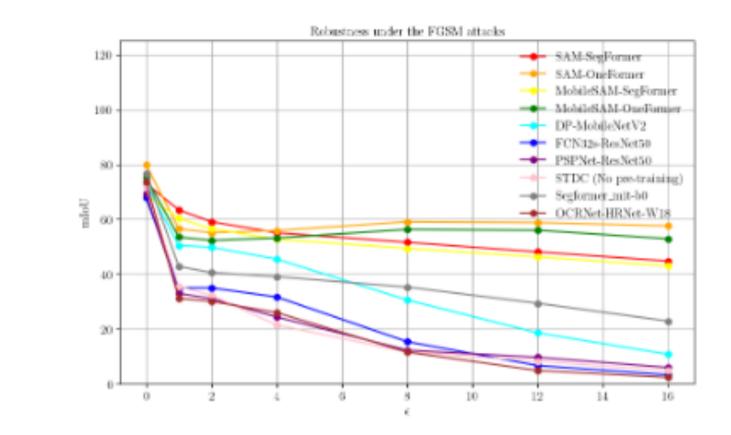
			В	lur				We	ather			Nois	e				Digit	tal		
Architecture	clean	Gaussian	defocus	motion	glass	zoom	snow	frost	fog	spatter	speckle	Gaussian	shot	impulse	brightness	contrast	JPEG	saturate	pixelate	elastic
SAM-SegFormer	73.0	38.2	42.4	47.3	41.5	17.4	23.6	25.7	57.2	47.5	47.1	20.1	27.7	22.0	68.7	48.0	38.8	64.6	59.4	67.9
SAM-OneFormer	80.0	58.2	59.9	55.6	53.6	19.4	36.0	34.2	70.4	63.3	62.0	26.0	30.4	32.2	76.6	62.4	48.1	71.7	13.4	73.1
MobileSAM-SegFormer	68.9	35.6	39.8	42.7	38.0	14.1	16.0	19.7	54.1	24.2	40.8	15.7	22.0	15.6	68.7	38.8	35.5	59.7	56.4	63.9
MobileSAM-OneFormer	75.3	52.9	55.4	50.8	50.3	16.0	21.0	25.0	66.3	31.4	67.0	20.4	25.7	25.4	76.6	49.7	43.8	65.9	13.2	69 .1

The robustness of SAMs under the black-box corruptions is considerable, which is beneficial for the SOTIF in autonomous driving.

White-box Attacks

TABLE III ROBUSTNESS (MIOU) OF DIFFERENT SEMANTIC SEGMENTATION MODELS UNDER THE FGSM ATTACKS ($\varepsilon = 8.0/255.0, 16.0/255.0$).

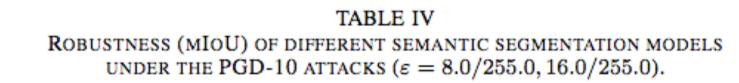
 $\varepsilon = 8.0/255.0$ $\varepsilon = 16.0/255.0$



Conclusion

- > Overparameterization + broad training data = zero-shot robustness
- > OneFormer backbone with the task unification is more robust
- > MobileSAM is more suitable for the real scenarios, which requires further adversarial finetuning

DP-ResNet50 [4]	36.9	16.6
DP-ResNet101 [4]	44.1	19.3
DP-MobileNetV2 [4]	30.6	10.8
DP-Xception65 [4]	17.1	4.9
FCN32s-ResNet50 [1]	15.4	3.3
FCN32s-ResNet101 [1]	26.6	10.0
FCN32s-VGG16 [1]	14.3	7.2
FCN16s-VGG16 [1]	10.3	6.8
FCN8s-VGG16 [1]	12.2	6.5
PSPNet-ResNet50 [3]	12.3	6.0
PSPNet-ResNet101 [3]	18.3	3.9
SegNet-VGG16 [2]	22.9	10.8
STDC (Pre-training) [8]	9.8	2.0
STDC (No pre-training) [8]	11.7	4.8
SegFormer_mit-b5 [5]	56.6	49.2
SegFormer_mit-b3 [5]	49.8	37.2
SegFormer_mit-b0 [5]	35.3	22.0
OCRNet-ResNet100 [7]	11.6	1.7
OCRNet-HRNet-W48 [7]	30.3	3.5
OCRNet-HRNet-W18 [7]	11.6	2.4
ISANet (ResNet50) [6]	13.9	3.2
ISANet (ResNet101) [6]	29.7	8.1
SAM-SegFormer	51.6	44.8
SAM-OneFormer	59.1	57.6
MobileSAM-SegFormer	49.4	43.0
MobileSAM-OneFormer	56.3	52.9



	$\varepsilon = 8.0/255.0$	$\varepsilon = 16.0/255.0$
PSPNet [3]	28.8	26.0
DeepLabV3 [49]	29.5	26.5
SAM-SegFormer	21.6	21.3
SAM-OneFormer	53.5	52.1
MobileSAM-SegFormer	19.8	20.6
MobileSAM-OneFormer	49.6	52.1

Fig. 3. Robustness study under the FGSM attacks

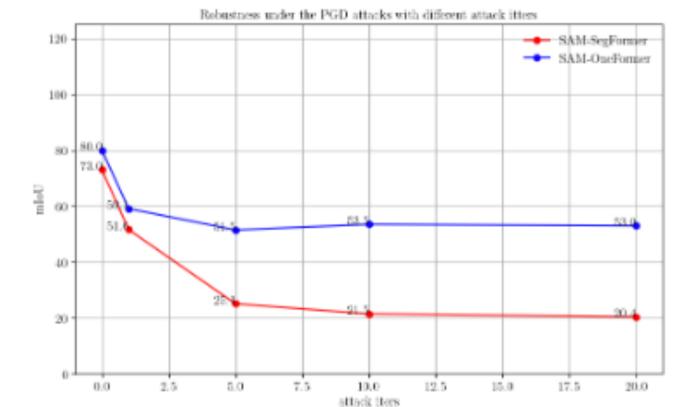


Fig. 4. Robustness study under the PGD attacks

TABLE V COMPARISON BETWEEN SAM AND MOBILESAM

> More testing scenarios like SegPGD and CosPGD is essential > This framework can be scaled to aerial vehicles or unmanned boats

Acknowledgment

This work was supported by the Shanghai International Science and Technology Cooperation Project No.22510712000 and the Special Funds of the Tongji University for "Sino-German Cooperation 2.0 Strategy" No. ZD2023001. The authors would like to thank TÜV SUD for the kind and generous support. We thank sincerely to Ms. He Zhang and Mr. Ronghui Liu for their help.

Inference Speed (ms) Params (M) 632 SAM [18] 452 MobileSAM [34] 5.78 8

The white-box can be attribute to the security issue. SAMs are robust under these gradient-based attacks. However, the defense is built upon the randomization that the model trained on the generalize data is transferred to the Cityscapes dataset.

[1] Yin, Huilin, et al. "On adversarial robustness of semantic segmentation models for automated **Reference** driving." IV, 2022. [2] Kirillov, Alexander, et al. "Segment anything." ICCV. 2023.

