

Sunday, October 29, 2023

Time	Gallery III
07:30	Registration Open
08:00	CADathlon Breakfast
08:30	
08:30	CADathlon
08:30	
08:30	AM Break
08:30	AW DICAR
08:30	CADathlon
08:30	
08:30	CADathlon
08:30	
08:30	CADathlon
08:30	CADUCINON
08:30	
08:30	PM Break
08:30	
08:30	
08:30	CADathlon
08:30	
08:30	

See Appo Se:	endix A & B for Full ssion Titles	Monday	, October 30, 20	23	
Time	Sculptor	Artisan	Atelier I	Atelier II	Gallery III
07:00					
07:30	Speakers Breakfast (Gallery III)				
08:00					
08:30		Openir	ng & Keynote: Bill Dally (Ga	llery II)	
09:00					
09:30			Coffee Break (Gallery III)		
10:00	Reconf-LP 3 Session Chairs:	Session Chairs	Analog 1 Session Chairs:	Timing 2 Session Chair:	
10:30	Vojtech Razek Weikang Qian	Yibo Lin Cheng Zhuo	Zheng Zhang, Liang Chen	Biying Xu	
11:00	#730, #749, #409, #603	#42, #52, #57, ##*	#413, #886, #455, #393	#371, #612, #642, #853	
11:30					
12:00			Lunch (Gallery III)		
12:30	Security-Alg 2 Session Chair:	SS 2 Session Chair:	NewComp 1 Session Chair:	AI-Sys 5 Session Chair:	
13:00	Siddarth Garg	Haoyu Yang	Saptadeep Pal	Marina Zapater, Jiaqi Gu	SRC Poster Session
13:30	#717, #363, #942, #924	#31, #35, #51, #55	#298, #349, #1037, #131	#26, #615, #590, #62	(Gallery III)
14:00	Security Arch 1 Session Chairs:	SS 3 Session Chairs:	Nano 1 Session Chair:	AI-Tools 2	
14:30	Ramya Jayaram Masti Anupam Chattopadhyay	Xiaofan Zhang, Peipei Zhou	Mehdi B. Tahoori	Ashutosh Dhar, Chen Zhang	
15:00	#231, #16, #638, #226	*See Appendix B for session titles*	#573, #130, #421, #928	#214, #229, #367, #411	
15:30			Coffee Break (Gallery III)		
16:00	PD 1 Session Chair:	SS 4 Session Chairs:	Bio 1 Session Chair:	SysDesign 1 Session Chair:	
16:30	Haocheng Li	во Yuan, Jiang Hu #40, #41, ##*, ##*	Mohammed Ibrahim	Hao Zheng	
17:00	#114, #137, #510, #601		#621, #339, #745, #402	#5, #927, #560, #365	
17:30	PD 2 Session Chair: Tsung-Vi Ho	CPS 2 Session Chair:		SysDesign 2 Session Chair:	
18:00		Caiwen Ding	LLM-Aided Design Panel	Bei Yu	
18:30	#267, #280, #219, #843	#61, #40, #39, #721		#680, #87, #266, #281	
19:00					
19:30	Industry Sponsored Session	Student Research Competition			
20:00					
20:30					
21:00			TPC Reception (Gallery III)		
21:30					

Tuesday, October 31, 2023

Time	Sculptor	Artisan	Atelier I	Atelier II
07:00	Spogkova Progistant (Callony III)			
07:30	Speakers breaklast (Gallery III)			
08:00		SS 5		
08:30	HLS 1 Session Chair:	Session Chair: Xiaoxuan Yang	Security-Alg 1 Session Chairs:	Al-Tools 1 Session Chair:
09:00	Cunxi Yu #204, #292, #331, #437, #482	#30, #34, #36, #44, ##*	Satwik Patnaik Amin Rezaei	Debjit Sinha #63, #186, #353, #428, #498
09:30			#974, #286, #727, #713,#319	
10:00		Coffee Bre	ak (Gallery III)	
10:30		Tutorial:		
11:00	Test 1	Kevin Rasch, Shavindra Premaratne	Reconf-LP 1 Session Chairs:	Al-Sys 1
11:30	Session Chair: Vidya Chhabria #10, #161, #743, #528, #475	#33: Introduction to Hybrid Quantum-Classical	Georgios Zervakis, Aoyang Zhang #1020, #235, #734, #752, #420	Session Chairs: Hyoukjou Kwon, Ziyun Li #511, #258, #96, #422, #256
12:00		Programming Using C++ Quantum Extension		
12:30				
13:00	Keynote Lunch (Gallery II) *Ticketed Event - Limited Accessed: First Come. First Served			
13:30				
14:00	Security-Arch 2	NewComp 2	Security-Arch 3	Analog 2
14:30	Nimisha Limaye, Jeremy Blackstone	Tsung-Wei Huang	Patanjali SLPSK	Session Chair: Sheldon Tan
15:00	#697, #631, #141, #228	#132, #224, #225, #352	#692, #75, #792, #540	#494, #307, #683, #154
15:30		Coffee B	reak (Gallery III)	
16:00	Timing 1	SS 7: 2023 CAD Contest at		
16:30	Session Chairs: Siddbartha Nath	Session Chairs: Chun-Yao Wang,	ICCAD Contest for Machine	Al-Sys 2 Session Chairs:
17:00	Masanori Hashimoto #57 #486 #847 #276 #468	Andy Yu-Guang Chen	(MLHW Contest)	Bingzhe Li, Syed Shakib Sarwar #120, #451, #343, #746, #308
17:30	<i></i>	#48, #39, #32, #53, #56		
18:00				
18:30				
19:00				
19:30		Job Fair & SIGDA I	Dinner (Gallery III)	
20:00				
20:30				
21:00				

Wednesday, November 1, 2023					
	Sculptor	Artisan	Atelier I	Atelier II	Curator
07:00				,	
07:30		Sp	beakers Breakfast (Gallery	III)	
08:00			,		
08:30		O	pening & Keynote: (Gallery	7 II)	
09:00	NewComp 3	SS 8 Session Chair:	PD 3	SysDesign 3	
09:30	Session Chair: Hussam Amrouch #178 #446 #449	Dr. Mark Ren	Session Chair: Nima Karimpour Darav #139 #224 #254	Session Chair: Xueqing Li	Top Picks in Hardware & Embedded Security
10:00	#178, #448, #443, #487	#43, #46, ##*, ##*	#138, #324, #334, #381	#1016, #912, #1031	
10:30			Coffee Break (Gallery III)		
11:00	HIS 2	Tutorial: Session Chairs:	Al-Tools 3	Al-Sve 3	
11:30	Session Chair: Ing-Chao Lin	Chris Lavin, Eddie Hung	Session Chairs: Jihye Kwon,	Session Chairs: Zhenge Jia,	Top Picks in Hardware &
12:00	#403, #213, #566, #593, #691	#37: RapidWright: Unleashing the Full Power of FRGA	Uday Mallappa #614, #744, #985,	Umamaheswara Rao Tida #594, #708, #646,	Embedded Security
12:30		Technology with Domain-Specific Tooling	#967, #537	#363, #956	
13:00					
13:30	Lunch (Gallery III) 30				
14:00	Test 0	SSI0		41.000.4	
14:30	Session Chair:	Yiyu Shi	Session Chairs: Kishor Kunal	Session Chair: Cheng TAN	Top Picks in Hardware &
15:00	#185, #151, #844, #779, #562	##*, ##*, ##*, #38_#50	#508, <u>#619,</u> #700,	#955, #1002, #993,	Embedded Security
15:30	#773, #302		#823, #1006	#695, #685	
16:00	Coffee Break (Gallery III)				
16:30		SS 11	- /		
17:00	DFM 1 Session Chair: Takashi Sato	Session Chairs: Francesco Regazzoni, Apostolos Fournaris	Recont-LP 2 Session Chairs: Eli Bozorazadeh	CPS I Session Chair: Meng Li	Top Dioko in Usedware C
17:30	#767, #577, #505, #737, #434	#45, #47, #49, #54, ##*	#197, #329, #493, #834, #979	#1030, #4, #239, #328, #1032	Embedded Security
18:00					

Session Title	Papers
SysDesign 1:	 #5, ARIES: Accelerating Distributed Training in Chiplet-based Systems via
DESIGNING CHIPLET-BASED	Flexible Interconnects #927, Monad: Towards Cost-effective Specialization for Chiplet-based Spatial
SYSTEMS	Accelerators #560, RONet: Scaling GPU System with Silicon Photonic Chiplet #365, Thermally-aware Multi-core Chiplet Stacking
SysDesign 2: SYSTEM-LEVEL DESIGN AND EXPLORATION	 #680, Path-based Processing using In-Memory Systolic Arrays for Accelerating Data-Intensive Applications #87, PANDA: Architecture-Level Power Evaluation by Unifying Analytical and Machine Learning Solutions #266, A Transfer Learning Framework for High-accurate Cross-workload Design Space Exploration of CPU #281, A General Wavelength-Routed Optical Networks-on-Chip Model with Applications to Provably Good Customized and Fault-Tolerant Topology Designs
SysDesign 3:	 #1018, Exploring Error Bits for Memory Failure Prediction: An In-Depth Correlative
DESIGNING MEMORY AND	Study #912, SSDe: FPGA-based SSD Express Emulation Framework #1031, HF-Dedupe: Hierarchical Fingerprint Scheme for High Efficiency Data
STORAGE SYSTEMS	Deduplication on Flash-based Storage Systems
CPS 1: Efficient Machine Learning for Real-World Applications	 #1030, TRAIN: A Reinforcement Learning Based Timing-Aware Neural Inference on Intermittent Systems #4, HyperNode: An Efficient Node Classification Framework Using HyperDimensional Computing #239, Brain-inspired Trustworthy Hyperdimensional Computing with Efficient Uncertainty Quantification #328, EDS-SLAM: An Energy-efficient Accelerator for Real-time Dense Stereo SLAM with Learned Feature Matching #1032, MOC: Multi-Objective Mobile CPU-GPU Co-optimization for Power- efficient DNN Inference
CPS 2:	 #61, Data Recomputation for Multithreaded Applications #40, HAPIC: a Scalable, Lightweight and Reactive Cache for Persistent-
Fast and Trustworthy	Memory-based Index #39, DOMINO: Domain-Invariant Hyperdimensional Classification for Multi-
Embedded Systems	Sensor Time Series Data #721, PARseL: Towards a Verified Root-of-Trust over seL4

Al-Tools 1: Towards graph-learning assisted electronic design automation (EDA)	 #63: Robust GNN-based Representation Learning for HLS #186: Accelerating Exact Combinatorial Optimization via RL-based Initialization A Case Study in Scheduling #353: Memory-aware Scheduling for Complex Wired Networks with Iterative Graph Optimization #428: GraPhSyM: Graph Physical Synthesis Model #498: GRAFT: Graph-assisted Reinforcement learning for Automated SSD Firmware Testing
AI-Tools 2: Alternative approaches to effective and efficient training of neural networks	 #214: Towards Effective Training of Robust Spiking Recurrent Neural Networks under General Input Noise via Provable Analysis #229: Analog or Digital In-memory Computing? Benchmarking through Quantitative Modeling #367: Falcon: Accelerating Homomorphically Encrypted Convolutions for Efficient Private Mobile Networks Inference #411: Rapid-INR: Storage Efficient CPU-free DNN Training Using Implicit Neural Representation
AI-Tools 3: Anywhere Anytime – Full Stack Al Deployment	 #614, DeepGate2: Functionality-Aware Circuit Representation Learning #744, DiviML: A Module-based Heuristic for Mapping Neural Networks onto Heterogeneous Platforms #985, PRIMO: A Full-Stack Processing-in-DRAM Emulation Framework for Machine Learning Workloads #967, ARES: A Mapping Framework of DNNs towards Diverse PIMs with General Abstractions #537, Learned Formal Proof Strengthening for Efficient Hardware Verification
AI-Tools 4: Adaptation, Acceleration, Automation – Tripple-A AI Computing 16:30	 #508, Automatic Kernel Generation for Large Language Models on Deep Learning Accelerators #619, SATformer: Transformer-Based UNSAT Core Learning #700, GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models #823, 3DNN-Xplorer: A Machine Learning Framework for Design Space Exploration of Heterogeneous 3D DNN Accelerators #1006, Klotski: DNN Model Orchestration Framework for Dataflow Architecture Accelerators
Al-Sys 1: Efficient Accelerator Design	 #511, An Energy-Efficient 3D Point Cloud Neural Network Accelerator With Efficient Filter Pruning, MLP Fusion, and Dual-Stream Sampling #258, BOOST: Block Minifloat-Based On-Device CNN Training Accelerator with Transfer Learning #96, SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding- Based Map Search and Inherent Sparsity-Aware Processing #422, RNA-VIT: Reduced-Dimension Approximate Normalized Attention Vision Transformers for Latency Efficient Private Inference #256, SAGA: Sparsity-Agnostic Graph Convolutional Network Acceleration with Near-optimal Workload Balance

AI-Sys 2: Design Tools and Performance Optimization for DNN Acceleration	 #120, Improving Realistic Worst-Case Performance of NVCIM DNN Accelerators through Training with Right-Censored Gaussian Noise #451, Runtime Row/Column Activation Pruning for ReRAM-based Processing-in-Memory DNN Accelerators #343, An Open Source Mixed-Precision Neural Network Accelerator Design Framework for FPGAs #746, Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks #308, MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference
Al-Sys 3: Efficient and Fair Machine Learning on the Edge	 #594, Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs #708, Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts #646, FET-OPU: A Flexible and Efficient FPGA-based Overlay Processor for Transformer Networks #636, PP-Transformer: Enable Efficient Deployment of Transformers through Pattern Pruning #956, Fast and Fair Medical AI on the Edge through Neural Architecture Search for Hybrid Vision Models
AI-Sys 4: Software/Hardware Co-design of AI Accelerator	 #955, SOLE: Hardware-Software Co-design of Softmax and LayerNorm for Efficient Transformer Inference #1002, TSTC: Two-level Sparsity Tensor Core Enabling both Algorithm Flexibility and Hardware Efficiency #993, A Point Transformer Accelerator with Fine-Grained Pipelines and Distribution-Aware Dynamic FPS #695, INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing #685, Efficient Sampling and Grouping Acceleration for Point Cloud Deep Learning via Single Coordinate Comparison
AI-Sys 5: Machine Learning on Emerging Platforms	 #26, Reliable Hyperdimensional Reasoning on Unreliable Emerging Technologies #615, NearUni: Near-Unitary Training for Efficient Optical Neural Networks #590, Kernel Shape Control for Row-Efficient Convolution on Processing-In- Memory Arrays #62, FIONA: Photonic-Electronic Co-Simulation Framework and Transferable Prototyping for Photonic Accelerator

Reconf-LP 1 Hot Microarchitectures: Modeling and Design	 #1020, ACOR: On the Design of Energy-Efficient Autocorrelation for Emerging Edge Applications #235, Fast Full-Chip Parametric Thermal Analysis Based on Enhanced Physics Enforced Neural Networks #734, DiCA: A Hardware-Software Co-Design for Differential Check-Pointing in Intermittently Powered Devices #752, IT-DSE: Invariant Risk Minimized Transfer Microarchitecture Design Space Exploration #420, Real-time Thermal Map Estimation for AMD Multi-Core CPUs using Transformer
Reconf-LP 2 Reconfigurable Computing	 #197, FLEX : Introducing FLEXible Execution on CGRA with Spatio-Temporal Vector Dataflow #329, Meltrix: A RRAM-based Polymorphic Architecture Enhanced by Function Synthesis #493, VecPAC: A Vectorizable and Precision-Aware CGRA #834, AIM: Accelerating Arbitrary-precision Integer Multiplication on Heterogeneous Reconfigurable Computing Platform Versal ACAP #979, IIBLAST: Speeding Up Commercial FPGA Routing by Decoupling and Mitigating the Intra-CLB Bottleneck
Reconf-LP 3 Approximate Computing	 #730, Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons #749, DASALS: Differentiable Architecture Search-driven Approximate Logic Synthesis #409, Constant Coefficient Multipliers Using Self-Similarity-Based Hybrid Binary-Unary Computing #603, Xel-FPGAs: An End-to-End Automated Exploration Framework for Approximate Accelerators in FPGA-Based Systems
Security-Alg 1 IP and IC Trust: Reflections and Advancement	 #974, Reflections on trusting TrustHUB #286, Automated Hardware Trojan Detection at LUT Using Explainable Graph Neural Networks #727, Risk-Aware and Explainable Framework for Ensuring Guaranteed Coverage in Evolving Hardware Trojan Detection #713, PDNSig: Identifying Multi-Tenant Cloud FPGAs with Power Distribution Network-based Signatures #319, An Anti-removal-attack Hardware Watermarking Method based on Polymorphic Gates
Security-Alg 2 Efficiency for Security	 #717, Striving for Both Quality and Speed: Logic Synthesis for Practical Garbled Circuits #363, EMSim+: Accelerating Electromagnetic Security Evaluation with Generative Adversarial Network #942, Hyperdimensional Computing as a Rescue for Efficient Privacy- Preserving Machine Learning-as-a-Service #924, PSOFuzz: Fuzzing Processors with Particle Swarm Optimization

2nd Editio

Security Arch 1 Microarchitectural security: to speculate or not?	 #231, BeKnight: Guarding against Information Leakage in Speculatively Updated Branch Predictor #16, HidFix: Efficient Mitigation of Cache-based Spectre Attacks through Hidden Rollbacks #638, Exploration and Exploitation of Hidden PMU Events #226, Secure-by-Construction Design Methodology for CPUs: Implementing Secure Speculation on the RTL'
Security Arch 2 How do we patch our neural nets (against information leakage)?	#697, Side Channel-assisted Inference Attack on Machine Learning-based ECG Classification #631, THE-V: Verifiable Privacy-Preserving Neural Network via Trusted Homomorphic Execution #141, Deep-learning Model Extraction through Software-based Power Sidechannel
Security Arch 3 Microelectronics security: what lies ahead?	 #692, Protection Against Physical Attacks Through Self-Destructive Polymorphic Latch #75, SAM: A Scalable Accelerator for Number Theoretic Transform Using Multi- Dimensional Decomposition #792, KyberMat: Efficient Hardware Accelerator for Matrix-Vector Multiplication in CRYSTALS-Kyber Scheme via NTT and Polyphase Decomposition #540, CRYSTALS-Dilithium on RISC-V Processor: Lightweight Secure Boot using Post Quantum Digital Signature
HLS 1 Novel ideas in logic synthesis	 #204, Fast Exact NPN Classification with Influence-aided Canonical Form #292, LIM-GEN: A Data-guided Framework for Automated Generation of Heterogeneous Logic-in-Memory Architecture #331, EasySO: Exploration-enhanced Reinforcement Learning for Logic Synthesis Sequence Optimization and a Comprehensive RL Environment #437, MiniTNtk: An Exact Synthesis-based Method for Minimizing Transistor Network #482, WolFEx: Word-Level Function Extraction and Simplification from Gate-Level Arithmetic Circuits
HLS 2 Technology Mapping revived	 #403, MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization #213, EffiSyn: Efficient Logic Synthesis with Dynamic Scoring and Pruning #566, EasyMap: Improving Technology Mapping via Exploration-Enhanced Heuristics and Adaptive Sequencing #593, AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search #691, Technology Mapping Using Multi-output Library Cells

Test 1: Simulation and Emulation	 #10, Fast and Scalable Gate-level Simulation in Massively Parallel Systems #161, SurgeFuzz: Surge-Aware Directed Fuzzing for CPU Designs #743, TaintFuzzer: SoC Security Verification using Taint Inference-enabled Fuzzing #528, Checkpoint Placement for Systematic Fault-Injection Campaigns #475, Sphinx: A Hybrid Boolean Processor-FPGA Hardware Emulation System
Test 2: Advances in Verification	 #185, Integrating Exact Simulation into Sweeping for Datapath Combinational Equivalence Checking #151, Verification of Flow-Based Computing Systems using Bounded Model Checking #844, Efficient Formal Verification and Debugging of Arithmetic Divider Circuits #779, Automatic Inductive Invariant Generation for Scalable Dataflow Circuit Verification #562, Accurate Hybrid Delay Models for Dynamic Timing Analysis
PD 1: Routability and Congestion Prediction	 #114: Routability Prediction and Optimization Using Explainable AI #137: Routability-driven Orientation-aware Analytical Placement for System in Package #510: Lay-Net: Grafting Netlist Knowledge on Layout-Based Congestion Prediction #601: ClusterNet: Routing Congestion Prediction and Optimization using Netlist Clustering and Graph Neural Networks
PD 2: Advanced Floorplanning and Partitioning	 #267: Handling Orientation and Aspect Ratio of Modules in Electrostaticsbased Large Scale Fixed-Outline Floorplanning #280: Floorplanning for Embedded Multi-die Interconnect Bridge Packages #219: iPL-3D: A Novel Bilevel Programming Model for Die-to-Die Placement #843: An Open-Source Constraints-Driven General Partitioning Multi-Tool for VLSI Physical Design
PD 3: The state-of-the-art Placement	 #138: HyPlace-3D: A Hybrid Placement Approach for 3D ICs Using Space Transformation Technique #324: Clock Tree Aware Global Placement for Low Power #354: Stronger Mixed-Size Placement Backbone Considering Second-Order Information #381: Systolic Array Placement on FPGAs

Analog 2: Novel frameworks and methodologies for optimizing analog/mixed-signal circuits	 #494, Multi-Product Optimization for 3D Heterogeneous Integration with D2W Bonding #307, Distributionally Robust Circuit Design Optimization under Variation Shifts #683, Practical Layout-Aware Analog/Mixed-Signal Design Automation with Bayesian Neural Networks #154, Design and Optimization of Low-Dropout Voltage Regulator Using Relational Graph Neural Network and Reinforcement Learning in Open-Source SKY130 Process
Bio 1: Neuromorphic Wonders: Bridging Minds and Machines	 #621, ARMM: Adaptive Reliability Quantification Model of Microfluidic Designs and Its Graph-Transformer-Based Implementation #339, A Novel and Efficient Block-Based Programming for ReRAM-Based Neuromorphic Computing #745, Multi-Objective Architecture Search and Optimization for Heterogeneous Neuromorphic Architecture #402, Power-Aware Training for Energy-Efficient Printed Neuromorphic Circuits
Nano 1 Emerging technologies for computation in memory	#573, Lowering Latency of Embedded Memory by Exploiting In-Cell Victim Cache Hierarchy Based on Emerging Multi-Level Memory Devices #130, SEE-MCAM: A Scalable Multi-bit FeFET Content Addressable Memory for Energy Efficient Associative Search #421, Accelerating Polynomial Modular Multiplication with Crossbar-Based Compute-in-Memory #928, LIORAT: NN Layer I/O Range Training for Area/Energy-Efficient Low-Bit A/D Conversion System Design in Error-Tolerant Computation-in-Memory
NewComp 1: Navigating the Future: A Voyage from Beyond CMOS to Beyond von Neumann	#298, PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM #349, TL-nvSRAM-CIM: Ultra-High-Density Three-Level ReRAM-Assisted Computing-in-nvSRAM with DC-Power Free Restore and Ternary MAC Operations #1037, VECOM: Variation-Resilient Encoding and Offset Compensation Schemes for Reliable ReRAM-Based DNN Accelerator #131, Automated Synthesis for In-Memory Computing
NewComp 2: Quantum Circuitry Unleashed: Innovations in Simulation, Synthesis, and Optimization	 #132, Full State Quantum Circuit Simulation Beyond Memory Limit #224, Optimizing LUT-based Quantum Circuit Synthesis using Relative Phase Boolean Operations #225, Optimal Layout Synthesis for Quantum Circuits as Classical Planning #352, Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping
NewComp 3: Frontiers in Quantum Computing: Novel Algorithms and Beyond	#178, Effective and Efficient Qubit Mapper #446, Exact Logic Synthesis for Reversible Quantum-Flux-Parametron Logic #449, DLPlace: A Delay-Line Clocking-based Placement Framework for AQFP Circuits #487, QPulseLib: Accelerating the Pulse Generation of Quantum Circuit with Reusable Patterns

SS 1 AI for Sign-Off Showdown: Unveiling the Cost & Effect of Artificial Intelligence SS 2 SS 2 Towards Generative AI for EDA: Datasets, Benchmarks and Infrastructures	 #42: Unleashing the Potential of Machine Learning: Harnessing the Dynamics of Supply Noise for Timing Sign-Off #52: Solving Fine-grained Static 3DIC Thermal with ML Thermal Solver Enhanced with Decay Curve Characterization #57: The Inevitability of Al Infusion into Design Closure and Signoff ##: Industry Trends for Power and Thermal Signoff in Advanced Nodes and Packaging #31: CircuitOps: An ML Infrastructure Enabling Generative Al for VLSI Circuit Optimization #35: VerilogEval: Evaluating Large Language Models for Verilog Code Generation #51: Verilog-to-PyG A Framework for Graph Learning and Augmentation on RTL Designs
	#55: Towards the Imagenets of ML4EDA
SS 3 Sustainable AI Training at the Large and Tiny Scales	 ##: Hardware-aware Sparsity: Accurate & Efficient Foundation Model Training ##: Federated Learning at Scale: Efficiency and Sustainability ##: DeepZero: Scaling Up Zeroth-order Optimization For Deep Model Training ##: Sustainable Training via Tensor Optimization
SS 4 Next-Generation Computing Paradigm for Next-Generation (6G) Wireless	 #40: Accelerating Next-G Wireless Communications with FPGA-based Al Accelerators #41: MU-MIMO Detection Using Oscillator Ising Machines ##: In-Memory Computing for Belief Propagation-based Wireless DSP ##: NVidia Roadmap to Al-Infused 6G: Requirement, Architecture & Key Technologies
SS 5 Frontiers in Edge AI: Technology, Algorithms, and Emerging Trends	#30: Towards the Efficiency, Heterogeneity, and Robustness of Edge AI #34: Ultra-Efficient Edge AI using FeFET-based Monolithic 3D Integration #36: Algorithm/Hardware Codesign for Few-Shot Learning at the Edge #44: Hyperdimensional Computing for Resilient Edge Learning ##: Interpretable and Robust Reasoning on Edge
Tutorial 1	#33: Introduction to Hybrid Quantum-Classical Programming Using C++ Quantum Extension

SS 7 CAD Contest at ICCAD	 #48: Overview of 2023 CAD Contest at ICCAD #39: CAD Contest Problem A: Multi-bit Large-scale Boolean Matching #32: CAD Contest Problem B: 3D Placement with Macros #53: CAD Contest Problem C: Static IR Drop Estimation Using Machine Learning #56: IEEE CEDA DATC: Emerging Foundations in IC Physical Design and ML-CAD Research 			
SS 8 Accelerating EDA Algorithms with Heterogeneous Parallelism	 #43: Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms #46: Accelerating Routability and Timing Optimization with Open-Source Al4EDA Dataset CircuitNet and Heterogeneous Platforms ##: Macro Placement with GPU-accelerated Placer and Automated Parameter Tuning ##: Heterogenous Acceleration for Design Rule Checking 			
Tutorial 2	#37: RapidWright: Unleashing the Full Power of FPGA Technology with Domain- Specific Tooling			
SS 10 In-Sensor AI Computing Towards Next-Generation Autonomous Edge Intelligence	 ##: Neural Sensors: AI driven In-Pixel Compute for Compressed Readout Bandwidth ##: On-Silicon In-Sensor Computing ##: The Path and Challenges to Bionic Vision as the Next "Moore's Law" Won't Be Defined by Transistor Density #38: Learned In-Sensor Visual Computing: From Compression to Eventification #50: In-Sensor Radio Frequency Computing for Energy-Efficient Intelligent Radar 			
SS 11 From Arithmetic Components to Side Channel Attacks: a Deep Dive in Post Quantum Hardware	 #45: Instruction Set Extensions for Post-Quantum Cryptography #47: Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM #49: A Scalable Hardware/Software Co-design Approach for Efficient Polynomial Multiplication #54: Dilithium Hardware-Accelerated Application using OpenCL-based High-Level Synthesis ##: A Scalable Hardware/Software Co-design Approach for Efficient Polynomial Multiplication 			

Thursday, November 2, 2023

Time	Sculptor	Artisan	Salon I	Salon II	Atelier I & II		
07:30	Breakfast (3rd Floor Foyer)						
08:00	Fast ML for Science	System Level Interconnect Path Finding	VLSI Education Community	Zero Trust Hardware Architectures	SUSHI		
08:30							
09:00							
09:30							
10:00	Coffee Break (3rd Floor Foyer)						
10:30	Fast ML for Science	System Level Interconnect Path Finding	VLSI Education Community	Zero Trust Hardware Architectures	SUSHI		
11:00							
11:30							
12:00	Lunch (3rd Floor Foyer)						
12:30							
13:00	Fast ML for Science	System Level Interconnect Path Finding	Zero Trust Hardware Architectures	Zovo Truck Handware	SUSHI		
13:30							
14:00				Architectures			
14:30							
15:00							
15:30	Coffee Break (3rd Floor Foyer)						
16:00	Fast ML for Science	System Level Interconnect Path Finding		7			
16:30				Architectures	SUSHI		
17:00							